| Diploma Thesis Percolation Simulation C++ Sourcecode Documentation |
#include <iostream>Include dependency graph for constants.h:

This graph shows which files directly or indirectly include this file:

Go to the source code of this file.
Defines | |
| #define | MAXNUMBER 320001 |
Functions | |
| REAL | critical_fillingfactor (int dim, NUMBER N) |
| REAL | saturating_fillingfactor (int dim, NUMBER N) |
| REAL | fillingfactor_noc1percent (int dim, NUMBER N) |
| COUNTER | choose_optimal_cuts_ffc (int dim, NUMBER N) |
| COUNTER | choose_optimal_cuts_ffs (int dim, NUMBER N) |
Variables | |
| const int | MAXDIM = 11 |
| const int | DEFDIM = 11 |
| const REAL | FFC_N_LIMIT [DEFDIM+1] |
| const REAL | FFC_N_FACTOR [DEFDIM+1] |
| const REAL | FFC_N_EXPONENT [DEFDIM+1] |
| const REAL | FFS_B_OFFSET [3] = {0, 0.4886, 1.18622} |
| const REAL | FFS_M_FACTOR [3] = {0, 2.31157, 0.46472} |
| const REAL | FFS_C_DIMBASIS = 0.74046 |
| const REAL | FFS_D_OFFSET = 1.91307 |
| const REAL | FFS_E_LOGFACTOR = 0.69157 |
| const REAL | noc1_d = 6.25188 |
| const REAL | noc1_e = 0.46828 |
| const REAL | noc1_f = 8.40778 |
| const REAL | noc1_g = 0.70916 |
| const REAL | noc1_k = 115.74947 |
| const REAL | noc1_l = 3.10626 |
| const REAL | noc1_m = -1.53707 |
| const REAL | noc1_n = 0.13135 |
|
|
Definition at line 15 of file constants.h. Referenced by ff::find_ff_with_criterion_frontend(), ff::find_ffc_frontend(), commandline::Nrange_ok(), commandline::range_ok(), and commandline::show_commandline_options(). |
|
||||||||||||
|
Definition at line 132 of file constants.h. References COUNTER, and NUMBER. Referenced by counters::choose_optimal_cuts().
00132 {
00133
00134 switch(dim) {
00135 case 1: switch (N) { // not tested!
00136 case 39: return 0;
00137 case 78: return 0; // not tested
00138 case 156: return 0; // not tested
00139 case 312: return 2; // ??
00140 case 625: return 4; // ??
00141 case 1250: return 5; // ??
00142 case 2500: return 5; // ??
00143 case 5000: return 6; // ??
00144 case 10000: return 7; // ??
00145 case 20000: return 7; // ??
00146 case 40000: return 9; // ??
00147 case 80000: return 9; // ??
00148 case 160000: return 11; // ??
00149 case 320000: return 11; // ??
00150 case 480000: return 11; // ??
00151 default: return 8; // ??
00152 }
00153
00154 case 2: switch (N) { // for maxdim=4:
00155 case 39: return 0;
00156 // tested on pc_uni
00157 case 78: return 0; // not tested
00158 case 156: return 0; // not tested
00159 case 312: return 2;
00160 case 625: return 4;
00161 case 1250: return 5;
00162 case 2500: return 5;
00163 case 5000: return 6;
00164 case 10000: return 7;
00165 case 20000: return 7;
00166 case 40000: return 9;
00167 case 80000: return 9;
00168 case 160000: return 11;
00169 case 320000: return 11;
00170 case 480000: return 11;
00171 default: return 8;
00172 }
00173
00174 case 3: switch (N) { // for maxdim=4:
00175 case 39: return 0;
00176 case 78: return 0; // not tested
00177 case 156: return 0; // not tested
00178 // tested on pc_uni
00179 case 312: return 3;
00180 case 625: return 4;
00181 case 1250: return 5;
00182 case 2500: return 5;
00183 case 5000: return 6;
00184 case 10000: return 7;
00185 case 20000: return 7;
00186 case 40000: return 8;
00187 case 80000: return 8;
00188 case 160000: return 8;
00189 case 320000: return 8;
00190 case 480000: return 8; // ?? evtl. niedriger
00191 default: return 7;
00192
00193 }
00194 case 4: switch (N) { // for maxdim=4:
00195 case 39: return 0;
00196 case 78: return 0; // not tested
00197 case 156: return 0; // not tested
00198 // tested on pc_uni
00199 case 312: return 2;
00200 case 625: return 4;
00201 case 1250: return 4;
00202 case 2500: return 5;
00203 case 5000: return 5;
00204 case 10000: return 6;
00205 case 20000: return 6;
00206 case 40000: return 6;
00207 case 80000: return 6;
00208 case 160000: return 7; // evtl. lower
00209 case 320000: return 7; // evtl. lower
00210 case 480000: return 7; //evtl. 10
00211 default: return 6;
00212 }
00213
00214 case 5: switch (N) { // for maxdim=6;
00215 case 39: return 0;
00216 case 78: return 0; // not tested
00217 case 156: return 0; // not tested
00218 // tested on pc_uni
00219 case 312: return 2;
00220 case 625: return 3;
00221 case 1250: return 4;
00222 case 2500: return 5;
00223 case 5000: return 5;
00224 case 10000: return 6;
00225 case 20000: return 6;
00226 case 40000: return 6; // ??
00227 case 80000: return 6; // ??
00228 case 160000: return 7; // ??
00229 case 320000: return 7; // ??
00230 case 480000: return 7; // ??
00231 default: return 6;
00232 }
00233
00234 case 6: switch (N) { // for maxdim=6;
00235 case 39: return 0;
00236 case 78: return 0; // not tested
00237 case 156: return 0; // not tested
00238 // tested on pc_uni
00239 case 312: return 0;
00240 case 625: return 1;
00241 case 1250: return 3;
00242 case 2500: return 5;
00243 case 5000: return 5;
00244 case 10000: return 6;
00245 case 20000: return 6;
00246 case 40000: return 6;
00247 case 80000: return 7;
00248 case 160000: return 7;
00249 case 320000: return 7; // ??
00250 case 480000: return 7; // ??
00251 default: return 6;
00252 }
00253
00254 case 7: switch (N) { // tested on PC_uni for maxdim=11
00255 case 39: return 0;
00256 case 78: return 0; // not tested
00257 case 156: return 0; // not tested
00258 case 312: return 0;
00259 case 625: return 0;
00260 case 1250: return 1;
00261 case 2500: return 6;
00262 case 5000: return 5;
00263 case 10000: return 6;
00264 case 20000: return 7;
00265 case 40000: return 7;
00266 case 80000: return 7;
00267 case 160000: return 7; // ??
00268 case 320000: return 7; // ??
00269 case 480000: return 7; // ??
00270 default: return 6;
00271 }
00272 case 8: switch (N) { // tested on PC_uni for maxdim=11
00273 case 39: return 0;
00274 case 78: return 0; // not tested
00275 case 156: return 0; // not tested
00276 case 312: return 0;
00277 case 625: return 0;
00278 case 1250: return 1;
00279 case 2500: return 3;
00280 case 5000: return 4;
00281 case 10000: return 5;
00282 case 20000: return 7;
00283 case 40000: return 7;
00284 case 80000: return 7;
00285 case 160000: return 7; // ??
00286 case 320000: return 7; // ??
00287 case 480000: return 7; // ??
00288 default: return 6;
00289 }
00290 case 9: switch (N) { // tested on PC_uni for maxdim=11
00291 case 39: return 0;
00292 case 78: return 0; // not tested
00293 case 156: return 0; // not tested
00294
00295 case 312: return 0;
00296 case 625: return 0;
00297 case 1250: return 1;
00298 case 2500: return 3;
00299 case 5000: return 4;
00300 case 10000: return 8;
00301 case 20000: return 8;
00302 case 40000: return 8;
00303 case 80000: return 8;
00304 case 160000: return 8; // ??
00305 case 320000: return 8; // ??
00306 case 480000: return 8; // ??
00307 default: return 6;
00308 }
00309 case 10: switch (N) { // tested on PC_uni for maxdim=11
00310 case 39: return 0;
00311 case 78: return 0; // not tested
00312 case 156: return 0; // not tested
00313
00314 case 312: return 0;
00315 case 625: return 0;
00316 case 1250: return 1;
00317 case 2500: return 3;
00318 case 5000: return 3;
00319 case 10000: return 4;
00320 case 20000: return 4;
00321 case 40000: return 5;
00322 case 80000: return 6;
00323 case 160000: return 6; // ??
00324 case 320000: return 6; // ??
00325 case 480000: return 6; // ??
00326 default: return 6;
00327 }
00328 case 11: switch (N) { // tested on PC_uni for maxdim=11
00329 case 39: return 0;
00330 case 78: return 0; // not tested
00331 case 156: return 0; // not tested
00332 case 312: return 0;
00333 case 625: return 0;
00334 case 1250: return 1;
00335 case 2500: return 3;
00336 case 5000: return 3;
00337 case 10000: return 4;
00338 case 20000: return 4;
00339 case 40000: return 4;
00340 case 80000: return 8;
00341 case 160000: return 8; // ??
00342 case 320000: return 8; // ??
00343 case 480000: return 8; // ??
00344 default: return 6;
00345 }
00346 default: return 6;
00347 }
00348 }
|
|
||||||||||||
|
Definition at line 352 of file constants.h. References COUNTER, and NUMBER. Referenced by counters::choose_optimal_cuts().
00352 {
00353 // This is for radii around the saturation point
00354 // (all in one cluster)
00355 // for MAXDIM = 11
00356
00357 switch(dim) {
00358 case 1: switch (N) {
00359 case 39: return 0;
00360 case 78: return 0;
00361 case 156: return 0;
00362 case 312: return 3;
00363 case 625: return 3;
00364 case 1250: return 5;
00365 case 2500: return 5;
00366 case 5000: return 6;
00367 case 10000: return 7;
00368 case 20000: return 8;
00369 case 40000: return 9;
00370 case 80000: return 10;
00371 case 160000: return 11;
00372 case 320000: return 11;
00373 case 480000: return 12;
00374 default: return 5;
00375 }
00376
00377 case 2: switch (N) {
00378 case 39: return 0;
00379 case 78: return 0;
00380 case 156: return 0;
00381 case 312: return 3;
00382 case 625: return 4;
00383 case 1250: return 4;
00384 case 2500: return 5;
00385 case 5000: return 5;
00386 case 10000: return 7;
00387 case 20000: return 7;
00388 case 40000: return 9;
00389 case 80000: return 9;
00390 case 160000: return 9;
00391 case 320000: return 9;
00392 case 480000: return 9;
00393 default: return 5;
00394 }
00395
00396 case 3: switch (N) {
00397 case 39: return 0;
00398 case 78: return 0;
00399 case 156: return 0;
00400 case 312: return 3;
00401 case 625: return 3;
00402 case 1250: return 3;
00403 case 2500: return 3; //?
00404 case 5000: return 4;
00405 case 10000: return 4; //?
00406 case 20000: return 5; //?
00407 case 40000: return 5; //?
00408 case 80000: return 7; //?
00409 case 160000: return 7;
00410 case 320000: return 7;
00411 case 480000: return 7; // ?
00412 default: return 4;
00413
00414 }
00415 case 4: switch (N) {
00416 case 39: return 0;
00417 case 78: return 0;
00418 case 156: return 0;
00419 case 312: return 0;
00420 case 625: return 0;
00421 case 1250: return 0;
00422 case 2500: return 2;
00423 case 5000: return 4;
00424 case 10000: return 4;
00425 case 20000: return 4;
00426 case 40000: return 5;
00427 case 80000: return 5;
00428 case 160000: return 5;
00429 case 320000: return 6;
00430 case 480000: return 7; //?
00431 default: return 4;
00432 }
00433
00434 case 5: switch (N) {
00435 case 39: return 0;
00436 case 78: return 0;
00437 case 156: return 0;
00438 case 312: return 0;
00439 case 625: return 0;
00440 case 1250: return 0;
00441 case 2500: return 0;
00442 case 5000: return 0;
00443 case 10000: return 3;
00444 case 20000: return 4;
00445 case 40000: return 5;
00446 case 80000: return 5;
00447 case 160000: return 5;
00448 case 320000: return 6; // ??
00449 case 480000: return 7; // ??
00450 default: return 3;
00451 }
00452
00453 case 6: switch (N) {
00454 case 39: return 0;
00455 case 78: return 0;
00456 case 156: return 0;
00457 case 312: return 0;
00458 case 625: return 0;
00459 case 1250: return 0;
00460 case 2500: return 0;
00461 case 5000: return 0;
00462 case 10000: return 0;
00463 case 20000: return 0;
00464 case 40000: return 3;
00465 case 80000: return 5;
00466 case 160000: return 5;
00467 case 320000: return 5; // ??
00468 case 480000: return 6; // not measured
00469 default: return 2;
00470 }
00471
00472 case 7: switch (N) {
00473 case 39: return 0;
00474 case 78: return 0;
00475 case 156: return 0;
00476 case 312: return 0;
00477 case 625: return 0;
00478 case 1250: return 0;
00479 case 2500: return 0;
00480 case 5000: return 0;
00481 case 10000: return 0;
00482 case 20000: return 0;
00483 case 40000: return 0;
00484 case 80000: return 0;
00485 case 160000: return 3; // ?
00486 case 320000: return 3; // ?
00487 case 480000: return 3; // ?
00488 default: return 0;
00489 }
00490
00491 case 8: switch (N) {
00492 case 39: return 0;
00493 case 78: return 0;
00494 case 156: return 0;
00495 case 312: return 0;
00496 case 625: return 0;
00497 case 1250: return 0;
00498 case 2500: return 0;// ?
00499 case 5000: return 1; // ?
00500 case 10000: return 1;// ?
00501 case 20000: return 2;// ?
00502 case 40000: return 2; // ?
00503 case 80000: return 3; // ?
00504 case 160000: return 3; // ?
00505 case 320000: return 3; // ?
00506 case 480000: return 3;
00507 default: return 1;
00508 }
00509 case 9: switch (N) {
00510 case 39: return 0;
00511 case 78: return 0;
00512 case 156: return 0;
00513 case 312: return 0;
00514 case 625: return 0;
00515 case 1250: return 0;
00516 case 2500: return 0;
00517 case 5000: return 1; // ??
00518 case 10000: return 1; // ??
00519 case 20000: return 1;// ??
00520 case 40000: return 2;// ??
00521 case 80000: return 2; // ??
00522 case 160000: return 2; // ??
00523 case 320000: return 2; // ??
00524 case 480000: return 2; // ??
00525 default: return 1;
00526 }
00527 case 10: switch (N) {
00528 case 39: return 0;
00529 case 78: return 0;
00530 case 156: return 0;
00531 case 312: return 0;
00532 case 625: return 0;
00533 case 1250: return 0;
00534 case 2500: return 0;
00535 case 5000: return 0; // ??
00536 case 10000: return 1; // ??
00537 case 20000: return 1; // ??
00538 case 40000: return 1; // ??
00539 case 80000: return 1; // ??
00540 case 160000: return 2; // ??
00541 case 320000: return 2; // ??
00542 case 480000: return 2; // ??
00543 default: return 1;
00544 }
00545 case 11: switch (N) {
00546 case 39: return 0;
00547 case 78: return 0;
00548 case 156: return 0;
00549 case 312: return 0;
00550 case 625: return 0;
00551 case 1250: return 0;
00552 case 2500: return 0;
00553 case 5000: return 0; // ??
00554 case 10000: return 1; // ??
00555 case 20000: return 1; // ??
00556 case 40000: return 1; // ??
00557 case 80000: return 1; // ??
00558 case 160000: return 2; // ??
00559 case 320000: return 2; // ??
00560 case 480000: return 2; // ??
00561 default: return 0;
00562 }
00563 default: return 6;
00564 }
00565 }
|
|
||||||||||||
|
Definition at line 52 of file constants.h. References FFC_N_EXPONENT, FFC_N_FACTOR, FFC_N_LIMIT, NUMBER, pow(), REAL, and saturating_fillingfactor(). Referenced by ff_critical(), R_critical(), and R_critical_guessed().
00052 {
00053 if (dim==1) return saturating_fillingfactor(dim, N);
00054 REAL a,b,c;
00055 a=FFC_N_LIMIT[dim];
00056 b=FFC_N_FACTOR[dim];
00057 c=FFC_N_EXPONENT[dim];
00058 if (a==-1) return -1;
00059 return (a + b* pow((REAL)N,c));
00060 }
|
|
||||||||||||
|
Definition at line 122 of file constants.h. References noc1_d, noc1_e, noc1_f, noc1_g, noc1_k, noc1_l, noc1_m, noc1_n, NUMBER, pow(), and REAL. Referenced by ff::ffnoc_guessed(), and starters::test_ffnoc1percent().
|
|
||||||||||||
|
Definition at line 81 of file constants.h. References FFS_B_OFFSET, FFS_C_DIMBASIS, FFS_D_OFFSET, FFS_E_LOGFACTOR, FFS_M_FACTOR, log10(), NUMBER, pow(), and REAL. Referenced by counters::choose_optimal_cuts(), critical_fillingfactor(), ff::ff_all_in1clst_guessed(), and starters::test_saturating_fillingfactor().
00081 {
00082 REAL result;
00083 if (dim==1 || dim==2){
00084 result=FFS_B_OFFSET[dim] + FFS_M_FACTOR[dim]*log10(N);
00085 return result;
00086 }
00087 if (dim>=3){
00088 result=pow(FFS_C_DIMBASIS,dim)*(FFS_D_OFFSET+FFS_E_LOGFACTOR*log10(N));
00089 return result;
00090 }
00091 return -1;
00092 }
|
|
|
Definition at line 33 of file constants.h. |
|
|
Initial value: {0,
-0.04169, -0.734, -0.462, -0.520, -0.560,
-0.534, -0.519, -0.524, -0.564, -0.567,
-0.588}Definition at line 46 of file constants.h. Referenced by critical_fillingfactor(). |
|
|
Initial value: {0,
-34.26936, 1.96, 0.738, 0.614, 0.433,
0.235, 0.122, 0.0714, 0.0489, 0.0273,
0.0161}Definition at line 41 of file constants.h. Referenced by critical_fillingfactor(). |
|
|
Initial value: {-1,
33.18634, 1.1282, 0.3416 , 0.13, 0.0543,
0.02346, 0.0105, 0.00481, 0.00227, 0.00106,
0.000505}Definition at line 35 of file constants.h. Referenced by critical_fillingfactor(). |
|
|
Definition at line 69 of file constants.h. Referenced by saturating_fillingfactor(). |
|
|
Definition at line 77 of file constants.h. Referenced by saturating_fillingfactor(). |
|
|
Definition at line 78 of file constants.h. Referenced by saturating_fillingfactor(). |
|
|
Definition at line 79 of file constants.h. Referenced by saturating_fillingfactor(). |
|
|
Definition at line 70 of file constants.h. Referenced by saturating_fillingfactor(). |
|
|
Definition at line 14 of file constants.h. Referenced by optimize::cuts_test_average_time(), commandline::dimrange_ok(), ff::find_ff_with_criterion_frontend(), ff::find_ffc_frontend(), main(), myVector::myVector(), commandline::range_ok(), commandline::show_commandline_options(), and datafiles::write_averaged_cuts_intro(). |
|
|
Definition at line 111 of file constants.h. Referenced by fillingfactor_noc1percent(). |
|
|
Definition at line 112 of file constants.h. Referenced by fillingfactor_noc1percent(). |
|
|
Definition at line 113 of file constants.h. Referenced by fillingfactor_noc1percent(). |
|
|
Definition at line 114 of file constants.h. Referenced by fillingfactor_noc1percent(). |
|
|
Definition at line 115 of file constants.h. Referenced by fillingfactor_noc1percent(). |
|
|
Definition at line 116 of file constants.h. Referenced by fillingfactor_noc1percent(). |
|
|
Definition at line 117 of file constants.h. Referenced by fillingfactor_noc1percent(). |
|
|
Definition at line 118 of file constants.h. Referenced by fillingfactor_noc1percent(). |
| Diploma Thesis Sourcecode
Documentation check out the text and the executable binaries |