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Preface

When I became infected with percolitis during a lecture series of Helmut Satz and Philippe Blanchard, the
whole concept of critical transitions soon started to grow clusters of associations on my own knowledge-
map. In that time all spontaneous processes of the outside world seemed to be explicable by percolation.
It is a beautifully simple model - but it still provides us with astonishingly deep insights about collective
behaviour of large systems in situations where we might without it only state:
Its more to the whole than only the sum of its parts.
Andreas Krueger, 4.12.2001

Questions

At my first contact with continuum percolation, a question was discussed between Philippe Blanchard
and Daniel Gandolfo:

• Why are 4-, 5- and 6-clusters the building block of the critical cluster in continuum percolation?

Moreover, an upper critical dimension for percolation was mentioned, so I wondered:
• What happens to the percolation process in higher dimensions?
• How can one at all get used to the concept of higher dimensions? They are frequently mentioned, but

our geometric imagination fails, so I wanted to do research on the properties of higher dimensional
spaces to get some grip at the topology.

Reading about the backgrounds and listening to experts, those important “critical exponents” obviously
draw a lot of attention because of their (use in) universality. Might there be a chance for a universal
systems theory by cataloguing critical behaviour?

• It is widely accepted that continuum percolation is in same universality class as random percolation
on the lattice - but that question still seems to lack numerical confirmation for the higher dimensions.

When I was asked by friends, what this toy-model percolation could be used for (which is a whole question
in itself), often the question of “detecting percolation before it happens” was asked:

• Applications of Percolation Theory? What can it be useful for in the “Real World”?
• Is it possible to find a criterion for an upcoming percolation before it actually happens?

During the work, when my computer program started to produce the first numerical data, I didn’t
succeed in fitting it - it actually turned out that while in the vicinity of the threshold the polynomial fits
with critical exponents help to classify the singularity, this question, however, is far more difficult than
expected:

• Can one find fit functions for the observables within the whole percolation interval, also in the
off-critical domain?

And of course, such a diploma thesis had a lot of practical aspects:
• How to do Science?

My unfortunate inclination of re-inventing the wheel instead of consulting the literature is founded
in a playful curiosity about the things themselves. On the other hand, it helped a lot to identify
the crucial problems of the research object.

• Scientific Programming, Object Oriented Programming
Handling a source code of now almost 10,000 lines needs a thorough abstraction and capsuling of
the functional ”onion shells”.
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• Personally, the most challenging (and thus rewarding) aspect of the work during the first phase
was to create an algorithm from the scratch that shows a good time complexity - and still works in
arbitrary dimensions.

• To use the computer, this learning machine as a learning-machine.

Most of these questions could not be solved within the limited time, but actually one success of the work
was that deeper insight itself - it provided the distinction of the important aspects of that field.
After you have finished reading this work, I would very much appreciate your opinion what to do further
research on.

Roadmap - How to Read This Work

At first, a quick Introduction into the concepts of percolation is given (chapter 1). The Theory-chapter
is a collection of background material on the subject; spheres and boxes in higher dimensional spaces
are studied, the main parameter “filling-factor” of continuum percolation is explained, some statistical
quantities and the Poisson distribution are introduced and the concepts of Universality and Complexity
are mentioned (chapter 2). Then the used Algorithm is explained in a rather abstract and non-technical
way (chapter 3) and the visualization program is presented (chapter 4).
The most important results can be found in the Thresholds-chapter 5, the long way from masses of data
to one single table of results can be followed.
The Technicalities-chapter 6 gives more technical details about the algorithm and some background on
programming, a short manual for the sourcecode and hints about compilers. The last chapter 7 Outlook
shows what could not be done due to lack of time; naturally such a work tries to follow one - more or
less consistent - path; so since the beginning many interesting sideways and ideas had to be postponed
to later studies.
The Appendix gives links to several interesting algorithms in Mathematica c© (mainly used for the graph-
ical visualizations throughout this work ) and to the C++ program that was programmed to obtain the
main results of this thesis.

Summary

Continuum percolation was chosen as a simulation model for phase transitions. Interesting and yet
unknown topics were identified while establishing knowledge about the necessary fundaments and the
breadth of this subject.
A dimension independent algorithm for clustering overlapping objects was developed and then imple-
mented in C++. It was run for about a year to examine the algorithm itself, the observables in the phase
transition interval and the position of the critical transition. Throughout this time, the program was
improved and enlarged greatly.
The position of the critical transition (threshold) was measured in dimensions 1-11. An
approximate fit function is given.
Finally, further interests and research ideas are collected and presented. (The C++ program is capable
of producing much more data than what could be examined up to now.)

URL of this work on the WWW

You find this thesis (and the sourcecode and binaries) at

www.AndreasKrueger.de/thesis/

for your convenience, there are versions in PS (PostScript) and PDF (Portable Document Format).
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Chapter 1

Introduction to Percolation

The mathematical model ”percolation” is introduced to the reader, first by an intuitive picture and by
naming the fields where percolation was applied to - then by a short overview about ”lattice percolation”,
the usually examined model, where the clustered objects are confined to lattice points.
The concept of criticality is introduced and the most important observables are shown.
Then continuum percolation is explained; in contrast to the lattice model, here the density of spheres
must be given by a ”filling factor” which can be related to the occupied volume.
Finally, the construction of ”clusters” by overlap is explained.

1.1 Percolation

Figure 1.1: When a cluster of coins touches both electrodes, the light goes ON. Shown are 25 and 60
coins, the theoretical critical threshold in this setting would be 50 coins.

Imagine a table with two electrodes on opposite sides. If you connect the electrodes, a light is switched
on. Now throw coins (of metal) randomly on that table. Nothing happens in the beginning, but suddenly,
with the throw of one pivotal coin, the light goes on.
This happens when a cluster of overlapping coins spans across the table - when percolation appears.
This scheme is a simple model to study phase transitions, where a macroscopic property (“the light is ON
or OFF”) changes its state by means of microscopic influence (“the clustering of coins”). See figure 1.1
for illustration.
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1.1.1 Applications

Percolation is one of the simplest mathematical models to generate non-trivial phase transitions geomet-
rically. Because of its simplification and abstraction it could be adapted to a wide range of phenomena.
Some examples are epidemics like the spreading of HIV in the body and among people [5], galaxy creation,
forest fires, boiling eggs [53, 6], the quark-deconfinement transition in QCD [45, 15, 49], Gaussian Primes
[59], Fiber networks in paper-making [39], social models for crashes on the stock market [54] or the success
of blockbuster-films [52] and many more. It helps to formulate a theory for the gelation of polymers under
a critical dilution [56], in gelation science the principal thoughts of percolation (without naming it so)
are even reaching back to 1941 [16].

1.1.2 Lattice Percolation

The system can be modelled in an easier way (and computed faster) on a grid, a lattice with definite
neighbours and only one or no disc per lattice vertex.
It has been studied since Broadbent and Hammersley coined the term “percolation” for these models in
1957 [10, 23], and Sykes and Essam tried to find exact solutions to the critical density and exponents for
2 dimensions in 1964 [57]. Only a short overview will be given here, for a deeper treatment see [26], [53],
[22], [32] and chapter 2.5.1 of this work.

p=0.7 p=0.8 p=0.9

p=0.4 p=0.5 p=0.6

p=0.1 p=0.2 p=0.3

p=0.7 p=0.8 p=0.9

p=0.4 p=0.5 p=0.6

p=0.1 p=0.2 p=0.3

Figure 1.2: Site percolation in 2 dimensions. In a hypercube HCint
d=2(l = 16) (a square of length 16 with

integer coordinates) there are occupied sites with probability p ∈ {0.1, 0.2, . . . , 0.9}. The left colouring
depends on the cluster numbers (different clusters have different random colours), the right one on the
cluster sizes (the bigger the cluster the darker the colour). Clearly you see undercritical and overcritical
realizations: the critical (percolation) threshold is characterized by the first path that crosses the square
from left to right.

Definition

For an intuitive understanding, first please look at the example realization of 2dimensional site percolation
in figure 1.2.
Consider the hypercubic lattice Zd in d dimensions. Site percolation is defined by choosing each site of
Zd to be occupied with probability p and vacant with probability 1 − p, independent of all other sites.
Two directly occupied neighbours are said to belong to the same (occupied) cluster. Bond percolation is
defined accordingly, by choosing each bond that is connecting two sites of Zd at Euclidean distance 1 (i.e.
no diagonal connection) to be occupied with probability p and vacant with probability 1−p, independent
of all other bonds. Two occupied bonds ending in the same site are said to belong to the same (occupied)
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cluster.
A path A ↔ B is a set of occupied sites (or bonds) in a cluster connecting sites A and B.

Critical Transition

There is a distinct point (a certain density of occupation) at which a cluster spans any area from one
side to the other. While the density is increased, this critical transition takes places suddenly:
1) There exists a critical probability pc for which an infinite path exists with probability P∞(p) > 0 if
p > pc and no infinite path exists with probability 1 if p < pc.
2) Or let HCd(l)∩Zd be a hypercube in d dimensions with edge-length l, containing ld vertices at integer
coordinates. For growing hypercube size l →∞ there exists a critical spanning probability pSp for which
a spanning cluster occurs with probability PSp(p) > 0 if p > pSp. A spanning cluster contains a path of
occupied sites (bonds) connecting two opposite faces of the hypercube.
Properties of these critical probabilities are [32]:

pSp = pc (1.1)
0 < pc < 1 for d ≥ 2 (1.2)

pc = 1 for d = 1 (1.3)

So the one dimensional case is a triviality, the system doesn’t percolate if only one site (bond) is not
occupied. For higher dimensions, there is a non-trivial critical occupancy probability pc marking the
transition point from an undercritical to an overcritical phase.
In computer simulations, definition 2 is more practical, because we will always look at finite hypercubes,
rarely at the whole Zd.

Critical Exponents and Universality

The measured observables Ω(p), like the percolation probability P∞(p), the correlation length ξ(p), and
the mean size of the finite clusters χ(p) have singularities (or singular derivatives) at the critical point;
they behave like power laws in the vicinity of the critical threshold:

Ω(p) ∼ |p− pc|ω (1.4)

The set of exponents {ω} classify the phase transition; in the concept of Universality, two systems with
identical exponents are in one universality class. There exist scaling relations that exhibit the relations
of those exponents to each other. For further treatment please consult chapter 2.5.1

11



Off-critical Behaviour of Observables

Not only at the critical threshold, percolation models are interesting to study. Models for “real-life”-phase
transitions have to take into account, that the system might not be in critical state yet - and still one likes
to extrapolate to criticality to compare with other systems; e.g. the use of epidemic models is motivated
by the hope to be able to predict the threshold without trespassing it (this would mean global infection).
Moreover, the saturation threshold might be more important in some situations.
The whole transition from single-site clusters (unconnected points) to one single remaining cluster only
(“Full-Connect”) can be studied by measuring the relevant observables. In figure 1.3 simulation results
are shown for 2dimensional site percolation in a square of length l ∈ {4, 16, 64, 256}, so for a number of
sites l2 ∈ {16, 256, 4096, 65536}. At the threshold pc ∼ 0.593 you see the (finite-size) signature of a sharp
jump of the spanning probability P∞(p) and a divergence of the mean size of the finite clusters χ(p). The
size of the biggest cluster behaves very similar to the spanning probability, because the biggest cluster is
likely to be the spanning one. Especially interesting for transition-prediction might be the number of
clusters - at pc it has already lowered again to a low number, the maximum being at pmaxNOC ∼ 0.272.
An extensive study of percolation literature didn’t yield functional expressions for these observables over
the whole range of occupancy p ∈ [0, 1] - so one of the most interesting questions has no answer yet:
What is the functional form of the observables Ω(p)?
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Figure 1.3: Observables of site percolation simulations in 2 dimensions for system sizes
N = l2 ∈ {16(diamonds), 256(stars), 4096(squares), 65536(triangles)} for the whole intervall of occupa-
tion densities p ∈ [0; 1]: The spanning probability P∞(p), and the relative (normalized with l2) number-
of-clusters, size-of-biggest-cluster and mean-size-of-finite-clusters. The l → ∞ limit of the percolation
threshold at pc = 0.593 can be seen in the first plot, the l → ∞ limit of the maxima of the number of
clusters is at pmaxNOC ∼ 0.272 (second plot).
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1.1.3 Continuum Percolation (the Boolean Model, the Inverted Swiss-Cheese
Model)

In contrast to the ”classical” lattice model described above, a variation lies in the focus of this work. In
continuum percolation, the discrete lattice vertices are replaced by d-dimensional continuous coordinates
within a hypercube HCd(l) with length l. Each coordinate is generated independently by a random point
process and serves as the center of a decorating (hyper)sphere with radius R.
For a visualization in 2 dimensions take figure 1.1

The Filling Factor

To have a measure for the occupied volume density of the system that can replace the occupancy p of
lattice models, a new parameter is introduced: The filling factor η in d-dimensions (see chapter 2.2)

η =
πdR

dN

ld
= πdR

dρ (1.5)

= πR2 N

l2
for the 2-dim case (1.6)

with sphere-radii R, number of spheres N , volume of d-dimensional hypercube ld, point density ρ and
the d-dim unitsphere volume πd (see chapter 2.1.1 for more information about πd):

πd =
πd/2

Γ(1 + d
2 )

(1.7)

The role of the critical occupancy probability pc is now taken by the critical filling factor pc → ηc. As an
example, the numerical result for the 2-dimensional case is:

ηcritical
dim=2 (N →∞) = 1.128

Thus in 2 dimensions, in the “thermodynamical limit” N → ∞, the sum of all volumes of discs thrown
into a l2-square has to be 1.128 · l2 to get the critical state that a spanning-cluster becomes possible, i.e.
a cluster that spans the entire domain for the first time.

The Occupied Volume Fraction

The filling factor sums all thrown volumes, so where ever there is overlap, occupied volumes are counted
several times (That is the reason why ηc can be > 1). If one wants to know the actually occupied volume,
a property of the Poisson point process (see chapter 2.3) gives a conversion:
The occupied volume fraction (without multiple overlap) is

φc = 1− empty-volume-fraction = 1− exp(−ηc) (1.8)

so that for the 2-dimensional case we get a ”occupancy” of about 68%:

φ2dim
c = 1− exp(−1.128) = 0.676

Clusters are Formed by Overlap

A cluster is herein defined as a set of overlapping hyperspheres. Two hyperspheres S1 and S2 with
coordinates x and y and radii R1 and R2 overlap if the relative distance of their centers is smaller than
the sum of their radii:

||x− y|| =

√√√√
d∑

i=1

(xi − yi)2 ≤ R1 + R2 (1.9)

Other conditions could be introduced, e.g. only spheres at overlapping distance with the same colour are
to be connected; or other objects like ellipsoids to model easier overlap in certain dimensional directions,
etc. The basic shape for all these variations, however, should be the hypersphere, because of its simplicity
and symmetry.

13



Chapter 2

Theoretical Backgrounds

Percolation is such a simple model, so the computer program bases on very few theoretical facts only.
This chapter is designed to shed light on some of the underlying theoretical facts of what is necessary to
understand to do the simulations.
First of all, the clustered objects, the d-dimensional (hyper)spheres, are described by the volume they
take in d-dim space. Therefore, a generalization of π is explained and examined, which poses a strange
but interesting interpretatory question.
Then, after these ”round” objects, the simplest ”square” objects are studied: Hypercubes. They are d-dim
generalizations of the regular 3-dim ”dice”-cube, and while the construction stays the same (parallel and
orthogonal lines between corner-vertices), their composition changes a lot with rising dimension, which
is treated in detail.
This first section is completely devoted to a deeper understanding of the properties of higher dimensional
spaces, because to imagine them geometrically seems to be a difficult task for us humans.
Then in section 2.2 the already mentioned filling factor is explained and related to other measure that
are sometimes used in publications. All of them give the density of thrown objects, which is the main
parameter that will be changed to drive the system from a non-percolating state to the critical state (=
critical density) - and then above into the overcritical domain.
When coordinates are thrown independently at random, the resulting distribution is Poissonian, so sec-
tion 2.3 gives some information about the Poisson distribution, which wasn’t used throughout the sim-
ulation, but is a useful tool for analytical proofs and to calculate the mean number of neighbours per
sphere at some filling factor.
Section 2.4 mentions backgrounds of statistics, especially the four scalars set (mean, variance, skewness,
kurtosis) that can be used to characterize distributions.
In section 2.5, the concept of Universality is introduced and lattice results are given. It is essential for
understanding what should be done next with the existing computer program.
Finally, section 2.6 gives an overview about computational complexity - a framework in which it becomes
clear why it was such an important task to improve the algorithm (see next chapter 3).

2.1 Properties of d-dimensional Euclidean Spaces

We are embedded in a 3-dimensional space and our brains are optimized to its properties after aeons of
evolution. For most of us this leads to unsurmountable difficulties to imagine higher-than-three dimen-
sional spaces geometrically. They can be treated formally in an easy way - as seen in equation 1.9 or
the algorithm part of this thesis - but one likes to have a more intuitive understanding of the properties.
Especially ”square” and ”round” objects are to be understood - so let’s look at boxes and spheres.

2.1.1 Hyperspheres

A hypersphere of radius R contains all points within distance R from the center c:

Bd(R) := {x ∈ Rd : ||x|| ≤ R} (2.1)
Bd(c,R) := c + Bd(R) = {x ∈ Rd : ||x− c|| ≤ R} (2.2)
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The volume of this d-dimensional hyperspheres is proportional to the d-th power of its radius: V ∼ Rd.
The proportionality factor is the volume of a hypersphere with radius 1:

Vd(R) = Vd(1) ·Rd (2.3)

Let’s call it πd.

The Unitsphere-Volume πd

This volume of a unitsphere (2.4) is found by d-fold integration of the sphere indicator function (see [17]).
Of course, this approach is only possible for non-zero, positive integer dimensions; however, the resulting
formula can be analyzed for non-integer (and even negative or imaginary) dimensions.
As you see in figure 2.1, it exhibits a strange dimension-dependence resulting from the antagonism of a
exponential and a Gamma-Function.

πd =
πd/2

Γ(1 + d
2 )

(2.4)

We all know the πd for 1, 2 and 3 dimensions, they are the prefactors of the volume formulas V1(R) = 2 ·R,
V2(R) = π ·R2 and V3(R) = 4π

3 ·R3, but the πd-curve keeps rising for the 4- and 5-dimensional hyper-
sphere, while it curves down towards zero for dimensions higher than 6.
The exact maximum is found at the root of

Γ′(1 + d
2 )

Γ(1 + d
2 )
− log (π) != 0 (2.5)

which evaluates to dmaxvol = 5.256946 with volume π5.256946 = 5.277768.
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Figure 2.1: The volume of a unitsphere in d dimensions (equation 2.4) - only the non-negative part makes
sense geometrically (values for negative d are obtained by continuation of the complex Γ-function). The
one-, two-, and three-dimensional volume are the well known 2, π and 4π

3 prefactors of the line-, disc-,
sphere-volume formulas. The maximum of the curve is at “dimension” dmaxvol = 5.256946.

A Hypercube and the Inscribed Hypersphere

Another question is the “volume-ratio of round to square objects” in d-dimensions. An (oriented) hy-
percube of length 2R and center at origin contains all points with each absolute coordinate below R:

HCd(2R) := {x ∈ Rd : |xi| ≤ R, ∀i with 1 < i ≤ d} (2.6)
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The volumes of the hypercube with length 2R and the inscribed hypersphere with radius R have the ratio

V sphere
d (R)

V cube
d (2R)

=
πd ·Rd

(2R)d

=
πd

2d
(2.7)

In one dimension a “unitsphere” of volume (=length) 2 is a line (= 1dim “hypercube”) of length 2, so
the ratio is naturally 1. A zero-dimensional “cube” is also the same as a “sphere” (both are points), so
the ratio must be 1, either! For 2 and 3 dimensions, the ratio is π/4 = 78.54% and π/6 = 52.36%.
For rising positive dimensions, (2.7) is a falling number above dmaxratio = 0.476583, where the “sphere”
is actually 1.03869 times bigger than the “cube”.
Please have a look at figure 2.2 to see this surprising behaviour; again the warning, (2.4) was derived
only for non-zero, positive integer dimensions - how can those continuous properties be interpreted?
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Figure 2.2: The volume-ratio of hypersphere to circumscribed hypercube in d-dimensions. For 0 and 1
dimensions, “cube” and “sphere” are identical, a 2 dimensional circle takes only 78% of the circumscribing
square. For rising dimension, the hypersphere quickly “disappears” inside the hypercube - so it takes less
and less d-dimensional space, e.g. for 10 dimensions only 0.25%.
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Figure 2.3: Hypercubes in 2-7 dimensions. Thanks for these images to Jonathan Bowen [8].

2.1.2 Hypercubes and Boxes - and the Number of Subobjects

Another way to imagine higher-dimensional spaces is to have a closer look at hypercubes, because they
are very simple objects and still contain a lot of the features of their embedding space.
The (2dim) square table, on which the coins were thrown on in figure 1.1, in 3 dimensions becomes a
cube that contains balls, in 4 dimensions a 4-dim hypercube with 4-dim hyperspheres, etc.
There is an excellent visualization in Java by Mark Newbold at [34], which projects a 4-dimensional
hypercube onto 3-dimensional space, using red-blue glasses or stareo-projection.
A d-dimensional box [0, a1] × [0, a2] × . . . × [0, ad] is a (hyper)cube, if all edges have the same length:
a1 = · · · = ad ≡ a. The volume is V =

∏
ai ≡ ad with a being the length of one one-dimensional edge of

the cube. Please have a look at figure 2.3 as a visualization of the following descriptions.

Boxes in d dimensions

A d-dimensional box is limited in the 2d directions by (d-1)-dimensional boxes, call them the 2d sides.
All d edges that come together in one vertex (or corner) are mutually perpendicular.
A possible construction rule is given by:

1. take a (d-1) dimensional box

2. ”pull” it in a new direction (perpendicular to the d− 1 existing directions) for a length of a

3. The d-dimensional box contains the whole d-dimensional volume that was touched by the pulled
(d-1)dim box

This description allows us to tell how many corners, edges, faces and volumes a 3-dimensional box has:
8, 12, 6, 1. The box was generated by pulling a point (1) to a line (2,1), the line to a square (4,4,1) and
the square to a box (8,12,6,1).

A Box is Made of Lower Dimensional Subboxes

Such a series of numbers of sub-(hyper)cubes in d-dimensional hypercubes should help to classify them;
the above construction rule gives a recursive formula for these numbers.
The number of D-dimensional subcubes of a d-dimensional hypercube is:
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• 2 times the number of the (D)-dimensional subcube of a d-1 dimensional hypercube
plus the number of the (D-1)-dimensional subcube of a d-1 dimensional hypercube

• zero for D > d
(e.g. there is no 4dimensional hypercube inside a 3dimensional)

• 2d for D = 0 (there are 2 · 2 · · · 2︸ ︷︷ ︸
d

vertices; a point is 0-dimensional)

With this recursive ”algorithm”, table 2.1 can be constructed:

Nd,D = 2Nd−1,D + Nd−1,D−1 (2.8)
Nd,0 = 2d (2.9)
Nd,D = 0 ∀D > d (2.10)

For example the number of vertices of a 4-space box is 2 times the number of vertices of the figure in the
next lower space (2 ∗ 8 = 16 = 24). The number of edges is 2 times the number of edges plus the number
of vertices from the figure in the next lower space (2 ∗ 12 + 8 = 32). The number of faces is 2 times the
number of faces plus the number of edges in the figure in the next lower space (2 ∗ 6 + 12 = 24). The
number of 3-volumes is 2 times the number of 3-volumes plus the number of faces of the figure in the
next lower space (2 ∗ 1 + 6 = 8). The number of 4-volumes is 2 times the number of 4-volumes plus the
number of 3-volumes from the figure in the next lower space (2 ∗ 0 + 1 = 1).

Table 2.1: The number of D-dimensional subcubes of a d-dimensional hypercube up to d=4

D 0 1 2 3 4
d vertices edges planes cubes 4D-cubes
0 1
1 2 1
2 4 4 1
3 8 12 6 1
4 16 32 24 8 1

Some properties of these numbers can be seen straight-forward from the construction:

• Nd,d = 1
(trivial: there is always one d-dimensional object in a d-dimensional object)

• Nd,d−1 = 2d
(the mentioned 2d sides that are (d-1)dimensional)

The Number of Subobjects

The above construction rule leads to the number of D-dimensional subcubes of d-dimensional hypercube.
It is easy to show that this simplifies to one formula:

Nd,D =
2d−D

D!
·

D−1∏

i=0

(d− i) (2.11)

=
(

d

D

)
· 2d−D (2.12)

The number of D-dim subobjects of a d-dim hypercube is thus given by (2.12):
”The number of different D-element-subsets of a d-element-set, multiplied by 2 to the power of the
remaining dimensions” 1.
Easy to understand, because the D-dim subcube needs any D of the d provided dimensions (the binomial)
as the orthogonal edge-directions from one corner-vertex - and it has 2 parallel versions in each of the
d−D codimensions.

1These d-dim sub-boxes can be used as the so-called simplicial complexes in algebraic topology invented by Euler in
order to characterize surface (and more generally space) topology through simple invariants[21].
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Properties of Those Numbers

Now we can try to understand high dimensional hypercubes by examining the behaviour of those numbers
of subcubes as a function of the dimension.

Table 2.2: The number of D-dimensional subcubes of a d-dimensional hypercube is Nd,D = 2d−D · ( d
D

)
.

Printed in boldface is the most frequent subcube in each dimension.

D=0 1 2 3 4 5 6 7 8 9 10 11
d vertices edges faces cubes 4D-cubes . . .
0 1
1 2 1
2 4 4 1
3 8 12 6 1
4 16 32 24 8 1
5 32 80 80 40 10 1
6 64 192 240 160 60 12 1
7 128 448 672 560 280 84 14 1
8 256 1024 1792 1792 1120 448 112 16 1
9 512 2304 4608 5376 4032 2016 672 144 18 1
10 1024 5120 11520 15360 13440 8064 3360 960 180 20 1
11 2048 11264 28160 42240 42240 29568 14784 5280 1320 220 22 1
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d
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9

Which D-dim Subobjects
are the most frequent
in a d-dim hypercube ?

Figure 2.4: The dimensionality of the most frequent subobject Dmax(d)) rises linearly with the dimension
d of the hypercube. For example, while the most frequent subcube of the regular 3-dim dice are the 12
edges, in a 9-dim and 10-dim hypercube, the 3-dim subcubes are the most frequent.

Looking at table 2.2 one notices that the maximum number slowly moves to the right, e.g. for 9d-
hypercubes the most frequent subobject is a 3D-cube with 10.5 cubes per vertex (5376/512 = 10.5). The
position of the maximum is shown in figure 2.4. It rises linearly with the dimension d of the hypercube.

Dmax(d) =
{

Integer(d/3) ∧ Integer((d + 1)/3) if (d + 1)modulo 3 = 0
Integer(d/3) if (d + 1)modulo 3 6= 0 (2.13)

The height of the maximum, the actual number Nd,Dmax(d) · 1
2d of subobjects per hypercube vertex in

d dimensions, is plotted in figure 2.5. For higher dimensions the asymptotic behaviour is exponential
growth:

Nd,Dmax(d) ·
1
2d
∼ exp (0.4052 · d− 4) ∼ 1.5d (2.14)

19



0 2 4 6 8 10

d-dim
hypercube

2

4

6

8

10

12

14

highest # of
D-dim SubObjects per Vertex

straight line = analytic result
dotted = exponential Fit

0 5 10 15 20

d-dim
hypercube

0

1

2

3

4

5

6

Logarithm of
highest # of D-dim SubObjects
per Vertex

straight line = analytic result
dotted = exponential Fit

Figure 2.5: The height of the maximal number of subobjects per hypercube-vertex Nd,Dmax(d) · 1
2d up

to dimension 10 plotted linearly and up to dimension 20, plotted logarithmically. The dotted line is the
fitted asymptotic exponential (2.14)
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2.2 The Critical Filling Factor ηc

As mentioned in chapter 1.1.3, the filling factor is the ratio of the volumes of all thrown objects to the
provided space:

η =
πdR

dN

ld
= πdR

dρ (2.15)

with radii R, number of spheres N , volume of d-dimensional hypercube ld, point density ρ and the d-dim
unitsphere volume πd introduced in chapter 2.1.1. The main target of this thesis was to compute the
critical thresholds ηc in d-dimensions.
The filling factor η can be varied in different ways, by varying N, R or l. This translates into throwing
more spheres, expanding each sphere or compressing the hypercube.
In the following, the second way was chosen (varying the size of the spheres). The size of the hypercube
was set to one l = 1, the number of spheres was kept constant in N ∈{39, 78, 156, 312, 625, 1250, 2500,
5000, 10000, 20000, 40000, 80000, 160000, 320000} and the radius was changed continuously to create
the desired filling factor or to locate the exact filling factor, at which a cluster spans the space.

2.2.1 The Number Density nc

As mentioned before, in chapter 1.1.3, the critical filling factor ηc can be transformed monotonically into
other parameters, like the critical number density nc [29]:

nc = (2R)d N

Ld
(2.16)

=
2d

πd
ηc (2.17)

which is the total thrown volume of all squares in which the spheres are inscribed.
For example, with the numerical estimations η2dim

c = 1.1282 and η3dim
c = 0.3416, the number densities

are n2dim
c = 1.4365 and η3dim

c = 0.652
The critical filling factor then becomes

η2dim
c =

π

4
nc ∼ 0.785 · nc (2.18)

η3dim
c =

π

6
nc ∼ 0.524 · nc (2.19)

η4dim
c =

π2

32
nc ∼ 0.308 · nc (2.20)

. . . (2.21)

For that prefactor, it is the ratio of box volume to sphere volume; please see the equation (2.7) and the
plot 2.2 in chapter 2.1.1.

2.2.2 The Occupied Volume Fraction φc

Another measure for the density is the occupied volume fraction - it can be found with the knowledge
that the Poisson distribution µaρ (see chapter 2.3) gives the probability that an area a in a point process
of density ρ is empty (k = 0) with µaρ(k = 0) = exp (−aρ) = exp (−η) [42].

φc = 1− exp (−η) (2.22)

For example, with the numerical estimations η2dim
c = 1.1282 and η3dim

c = 0.3416, the occupied volume
fractions are φ2dim

c = 0.6764 and φ3dim
c = 0.2894. So compared to site percolation on the lattice, the

threshold in continuum percolation in terms of density is bigger in 2dim and smaller in 3dim.
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2.3 Poisson Distribution

The Poisson distribution is a ”rare events” approximation of the binomial distribution

PB(k) =
(

N

k

)
pk(1− p)N−k (2.23)

for N → ∞, p → 0 with Np = λ = const, so in practical situations for many events N and small
probability p .
A point process with density ρ = N

ld
generates independently N vectors that consist of d random coordi-

nates uniformly distributed in [0, l]. Now introduce test areas with volume a and ask for the number of
points in a. Naturally there are areas with less and areas with more points in it. The relative number of
areas with k points is given by the Poisson distribution µaρ(k):

µaρ(k) = e−aρ (aρ)k

k!
(2.24)

with ρ=point density, a=volume of test area, k=number of points in test area.
So the probability to have no points in the test area is µaρ(0) = exp (−aρ), for one point µaρ(1) =
aρ exp (−aρ), for two points µaρ(2) = (aρ)2

2 exp (−aρ), etc.

2.3.1 Properties of the Poisson distribution

As the µaρ(k) give a probability to find k points in a, all relative numbers µaρ(k) sum up to 1:
∑

k

µaρ(k) = 1 (2.25)

The mean number of points k in test area a is naturally proportional to the volume of the area and the
density of the point process: a · ρ

k =
∑

k

k · µaρ(k) = aρ (2.26)

2.3.2 Critical Number of Neighbours

A useful application of these Poisson properties is the answer to the question [20] about the mean number
of neighbours of one sphere at criticality, an important number e.g. for spreading algorithms [58].

Figure 2.6: The centers of all neighbours (light gray) of a sphere (dark gray) lie in a “corona” of double
radius.

Please see illustration 2.6 to understand the following condition for overlap (in this formulation only valid
for equal-sized-spheres):
A sphere of volume a = πdR

d is embedded in a “corona” of volume A = πd(2R)d = 2d · πdR
d, in which

all centers of overlapping spheres must lie. It is the so-called ”excluded volume” Vex = 2dV .
The Poisson distribution now tells us about the probability µAρ(k) of k points in area A. For the mean
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number of neighbours NoN , it has to be summed over all probabilities µAρ(k) to get the mean for one
sphere and to be averaged over all spheres N :

NoN =
1
N

∑

i=all N spheres

NoNi

=
1
N

∑

allNspheres

∑

k

k · µAρ(k)

(2.26)
=

1
N

N ·Aρ

= 2d · πdR
d · ρ

(2.15)
= 2dη (2.27)

So with the numerical result for criticality in 2 dimensions ηc = 1.1282, we get:

NoN2dim,critical = 4ηc = 4.5128

In chapter 5.3.5, the simulation results for the other thresholds in d-dimensions will be expressed in terms
of the critical mean number of neighbours.

2.4 Statistics

2.4.1 Mean Value and Fluctuation

Let Mi be n measurements. The mean value is

< M >= M =
1
n

n∑

i=1

Mi

the variance (or fluctuation) of the mean is

σ2 =
1
n

n∑

i=1

(Mi −M)2

This can be written as

< (M −M)2 > = < M2 − 2MM + M
2

>

= < M2 − 2M < M > + < M
2

>

= < M2 > −2M
2

+ M
2

= < M2 > −M
2

= < M2 > − < M >2 (2.28)

Since at the transition point the observables fluctuate strongly, the maximum of the composite observable
< M2 > − < M >2 might serve as an indicator for a transition point.

2.4.2 Skewness and Kurtosis

Usually the first and second moment of distributions are calculated (the mean and the variance). However,
there are more (see table 2.3), namely the skewness (third central moment) and the kurtosis (fourth central
moment), the latter frequently used in econometrics to describe ”fat tails” of e.g. revenues probability
distributions. For an example calculation of the four moments for a flat distribution of random numbers,
please have a look at chapter 6.2.5.
In our case, small system sizes result in spanning-filling factor-distributions that are far from being
symmetric, but have a steep increase for lower values (skewness >> 0) and have a strong “excess” (high
kurtosis, a wider peak than a Gaussian).
Please have a look at the N = 78 and the N = 20, 000 spanning-filling factor distributions in figures 5.5
and 5.6 in chapter 5 to see this property of small system sizes.
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Table 2.3: The central moments of a distribution, their definitions and interpretations

mean x = 1
n

∑n
i=1 xi the mean value after

n realizations {xi}
variance σ2 = 1

n

∑n
i=1(xi − x)2 the variance around the mean value;

the square of one standard-deviation if Gaussian
skewness 1

σ3·n
∑n

i=1(xi − x)3 if the distribution is crooked to the left or right;
for symmetric distributions == 0

kurtosis 1
σ4·n

∑n
i=1(xi − x)4 ”flatness”; length of tails compared with height of center

- or width of the peak; for Gaussian == 3

2.4.3 The Standard Error of the Mean

The standard deviation σ of a distribution is the square root of the variance σ2.
The standard error of the mean (SEM) [28, 30] is designated as: σM . It is the standard deviation of the
sampling distribution of the mean. It is defined as:

σM =
σ√
n

(2.29)

where σ is the standard deviation of the original distribution and n is the sample size.
So, if one needs a statistical error bar for the quality of a measurement, the standard deviations of
all four moments have to be multiplied again by 1√

n
, so that a slow focussing of the ’measurement ±

standard-deviation’ takes place for increasing sample size.

2.5 Universality

The hope is that discriminating different universality classes helps to distinguish between fundamentally
different systems and processes.
Systems are classified by the “steepness” of their singularities, which can be expressed by critical exponents
of a polynomial fit around the critical threshold. Systems with identical or similar critical exponents are
then regarded as being in the same universality class.
Important to notice is that similarity of those exponents is reported from models in totally different
fields and length-scales. The classification of phase transitions might lead to a deeper understanding of
universal structures and processes in nature. One system of a universality class can be studied and results
be applied to other models of the same class.
Still, there are non-universal properties like the actual location of the singularity itself, which depend
sensitively on the formulation of the model, but which are most important for practical purposes.
One example are site and bond percolation on different lattice types (square, triangular, honeycomb, . . .
lattices). While the thresholds differ a lot, the critical exponents are only dependent on the dimension of
the embedding space.
A second example is the similarity of lattice and continuum percolation. While the location of the critical
threshold in 2dim lattice site percolation pc = 0.593 is very different from the location of the threshold
in 2dim continuum percolation ηc = 1.1282 (or nc = 1.4365 or Φc = 0.6764), the critical exponents are
widely accepted to be identical.
Most of the percolation models belong to one of the simplest classes, the universality class of random, or
uncorrelated, percolation [25].

2.5.1 The Critical Exponents β, γ, ν, D

The Percolation probability P∞(p), the correlation length ξ(p) (= linear length of the biggest cluster),
and the mean size of the finite clusters χ(p) behave like power laws in the vicinity of the critical threshold
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[53]:

P∞(p) ∼ (p− pc)β for p > pc (2.30)

χ(p) ∼
{

(pc − p)−γ for p < pc

(p− pc)−γ′ for p ≥ pc
(2.31)

ξ(p) ∼
{

(pc − p)−ν for p < pc

(p− pc)−ν′ for p ≥ pc
(2.32)

usually with ν = ν′ and γ = γ′.

For the first 6 dimensions in (hyper)cubic lattice percolation, Stauffer and Aharony give a table of the
exponents (and the position of the thresholds pc(dim)) in [53];

dim psite
c pbond

c β γ ν
1 1 1
2 0.592746 0.5 5/36 ∼ 0.139 43/18 ∼ 2.39 4/3 ∼ 1.33
3 0.3116 0.2488 0.41 1.80 0.88
4 0.197 0.1601 0.64 1.44 0.68
5 0.141 0.1182 0.84 1.18 0.57

6 -ε 0.107 0.0942 -ε/7 +1 ε/7 +1 5ε/84 +0.5
7 0.089 0.0787
∞ 1 1 1/2

The last line dim →∞ represents results for the “Bethe lattice” (or “Caley tree”). It can be regarded as
an infinite dimensional structure, because in each “generation” of the branching process that results in
this tree structure, the number of added vertices is proportional to the number of already existing vertices
inside; so the “surface” of the structure is proportional to the “volume”, a feature of infinite dimensional
objects.
Please have a look at figure 2.7 to see the dimension-dependence of 3 exponents and their dim → ∞
limit. There seems to exist an upper critical dimension d∗ = 6 above which the critical exponents no
longer change but have attained constant ”mean field” values.
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Figure 2.7: The critical exponents β, γ and ν for lattice percolation in the first 6 dimensions and their
dim→∞ limit. A plot of the table in chapter 2.5.1. The source of the data is Stauffer & Aharony [53].

The exponents are not fully independent, however. Only two of the critical exponents can be set indepen-
dently. The theory of phase transitions gives relations between the exponents β, γ and ν, the embedding
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dimension d and the fractal dimension D (of the infinite cluster at criticality, e.g. D = 91/48 for d = 2
and D = 2.50 for d = 3), the so-called “scaling relations”, two of them being e.g.:

dν = 2β + γ (2.33)

d = D +
β

ν
(2.34)

2.5.2 Finite Size Scaling

An important remark is the total lack of phase transitions in finite systems, because the finite attributions
of all the constituents can’t sum up to a singularity in an observable - a finite sum of finite summands is
finite!
With growing system size N , however, one might get a finite-size signature of an upcoming singularity for
the so-called ”thermodynamical limit“ N →∞, a drift of the measurements towards infinity or towards
a non-smooth curve at the - then critical - point. In this way, it becomes possible to extrapolate from
finite simulations without - to an infinite system with critical transitions.
On the lattice, it is known how to do a finite size scaling of the system order parameter Θ, e.g. the largest
cluster mass, by using the lattice length L as the system size, with which the order parameter has to be
rescaled [36]:

Θ ∼ L−β/νF [(pc − p)L1/ν ] (2.35)

For continuum percolation, one of the questions is if in d-dimensions L can be set as L = N1/d to do a
similiar finite size scaling.

2.6 Time Complexity of Algorithms

The complexity of a problem can be understood in many ways. In computer science, mostly three aspects
of complexity of algorithms are distinguished:

• time complexity
The limiting behavior of the execution time of an algorithm when the size of the problem goes to
infinity [66].

• space complexity
The limiting behavior of the use of memory space of an algorithm when the size of the problem
goes to infinity [66].

• algorithmic complexity,
the “easiness of writing” [66] an algorithm that produces the wanted result. There might be an
easy-to-code, but slow and memory-consuming version - and a rather difficult solution to the same
problem that saves time and/or memory.

While the third criterion is a qualitative one, the first two can be measured and be denoted in big-O
notation (or big-Omicron notation), giving the dependency on the size of the problem, usually expressed
as the number n of objects treated by the algorithm.

2.6.1 A Simple Example for Computational Complexity

Look at the example: “What is the sum of n numbers?”
The algorithmic complexity of the following version is something like “three lines of Mathematica c© code”,
if the numbers are stored in array:

n=Length[array];
sum=0;
Do[sum += array[i], {i,1,n} ] ;

The time and space complexity can be analyzed without actually measuring; because of the n accesses
to the array and the n − 1 summations (each taking some constant CPU time for one access and one
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addition), the execution time is linearly proportional to the number n of numbers, so we can write in
the big-O notation:

time(n) ∼ O(n)

If you only ask about the necessary memory for the actual summation (if the n numbers are not taken
from the array, but generated during the summation, e.g. randomly), we see that only 2 variables have
to be stored: sum and i, so the memory usage will not grow if we increase the number n of numbers.
We can write

memory′(n) ∼ O(1)

If in our analysis, we include the memory necessary to store all the n numbers, of course, we need memory
for an array with a length proportional to n:

memory′′(n) ∼ O(n) + memory′(n) = O(n) + O(1) = O(n)

2.6.2 A Short Overview about Frequent Complexity Functions

The following table gives some possible asymptotics, their names and and some examples for time com-
plexity :

O(1) constant random access to an element of an array
O(log (n)) logarithmic random access in a sorted list by binary search
O(n) linear random access in a linked list; sequential search
O(n log (n)) “n log n” sorting a list by a good algorithm
O(n2) quadratic sorting a list by bubble sort
O(nk) polynomial (probably [70]:) is the number n a prime number?
O(exp (n)) exponential
or O(cn) exponential obviously with c > 1
O(n!) factorial
O(nn)

some remarks:

• Two different solutions to the same problem might be in the same complexity class O(f(n)), but
still one is faster than the other, because the proportionality constant is smaller.

• There are hard problems for which one can be happy about approximations with polynomial time
complexity, but usually algorithm should perform better than with quadratic asymptotics.

• Sorting problems are often (lower) bounded by O(n log n)

• Storing data in trees gives the possibility to find one leaf in O(log n) time

• It is still an open problem to answer the question whether the classes of polynomial time algorithms
and non-polynomial time algorithms are identical or not [21] (”The P versus NP Problem” was even
declared one of the ”Millenium Prize Problems”[11]).

As you will see in chapters 3.1.1 and 3.2.4, for this work it was urgently necessary to create an algorithm
that solves the “d-dimensional sorting problem” in less than quadratic time. Otherwise it would have
been impossible to study larger systems and repeat each simulation many times to get a good statistics.
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Chapter 3

Algorithm

The main goal of this chapter is to describe different approaches to identify clusters among N spheres in
d-dimensional spaces and how to measure the main observables.
This “core-algorithm” can then be used for different questions:

• Where is the exact location of the threshold?

• What is the analytical content (the functional dependence) of the observables in the whole range
of filling factors η ∈ {0,∞}?

Those parts of the program are described later in chapter 6.5; for more technical details about the data
structure and other technicalities, please consult the chapter 6.
However, if you are not interested in programming or if you lack the knowledge of C++, nevertheless
this chapter 3 is worth reading, because it will explain the approach without many technical terms.

3.1 Complexity O(N 2)

3.1.1 The Naive Algorithm

The easiest program is often the best, the advantage of an obvious proof for correctness makes up for
disadvantages in e.g. time complexity (see chapter 2.6).
For our question, in the beginning I could find a very easy solution, using recursion, i.e. a subroutine that
calls itself until a break-out condition is reached - in this case, until all possible neighbours have been
visited.
This algorithm visits all possible bonds between N points:

N − 1 + N − 2 + · · ·+ 2 + 1 =
N−1∑

i=1

i =
1
2
N(N − 1) ∼ N2 (3.1)

and checks if a pair of points is close enough to have overlapping spheres (see equation (1.9)). It starts
with sphere number 1 as the comparer, and when it finds an overlapping neighbour (that is not already
part of the cluster), it calls itself with that neighbour as the comparer. So the tree of connectivity is
traversed “depth-first” in this essentially two-lines-of-code algorithm1:

SUB neighbour (this,first,last,clusternumber)

this.clusternumber = clusternumber; // set visited flag to actual clusternumber

FOR other = first to last // visit all candidates (LOOP-start)

IF other.clusternumber == 0 THEN // check only unvisited candidates for overlap

IF overlap(this, other) THEN // if overlap, then it is a neighbour

CALL neighbour (other, first, last,

clusternumber) // recursion

NEXT other // LOOP ends here

END neighbour

1Throughout this text, a pseudocode is used for computer programs (if it’s not Mathematica c©). Pseudocode is easy to
understand even without programming experiences. Please consult appendix A.1 for explanations
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That subroutine marks the one sphere this2 as part of the actual cluster, and then checks for overlap
with all those candidates between sphere number first and sphere number last (that are not found yet
to be part of a cluster). If it finds an overlap, it calls itself with the found neighbour (recursion!).
The main routine calls that subroutine for all spheres:

SUB find_all_clusters (N)

clno=1 // the first cluster is named ‘‘1’’

FOR i=1 TO N // LOOP: each sphere could be the first of a cluster

IF i.clusternumber==0 THEN // if it’s not visited already

CALL neighbour (i, i+1, N, clno) // traverse the cluster depth-first

clno ++ // increase the clusternumber for the next cluster

NEXT i // LOOP ends here

return clno // return the next clusternumber

END find_all_clusters

The main program calls this subroutine for all those spheres i from 1 to N that are not already in a
cluster (so still i.clusternumber==0). This condition is always checked first to prevent unneccessary
overlap-checking (see chapter 6.4.2). After one recursion has crawled back up, there is no sphere left
between first=i+1 and last=N that could be part of the cluster that started with i, so a new cluster
with an increased clusternumber begins. At the end, this iteration returns the number of found clusters
+ 1.
This program works well, is easy to understand, and up to now, it functions as a validation of other,
more-complicated algorithms. Because of the 2 nested loops that visit all possible bonds, however the
time complexity is O(N(N−1)

2 ) ∼ O(N2). For small N this is no problem and my very first results were
actually calculated using just this simple approach. The need for bigger systems however, brought up the
idea of a divide-and-conquer-approach described in chapter 3.2.
I have not found an alternative to search in this ’naive’ way in the vicinity of a sphere, so until now, that
naive clusterfinder is still used in the ’inner loop’ of the main algorithm, inside the small cells that the
whole problem is broken into (these ’areas’ or ’cells’ of the divide-and-conquer typically contain 50-250
spheres).

3.1.2 The First Transition - Find a Hold in Parameter Space

When one starts with a new problem, even with a tested algorithm, it is not clear right from the start
if and where a signature of a transition can be found. The first thing to do is to scan a huge part of the
possible parameter space between far-undercritical and far-overcritical domains.
So at first, N = 10000 coordinates were thrown in a box [0, 10000] × [0, 10000] and then after each
measurement, the radii of all spheres were increased a little bit, scanning a wide intervall for R; in
figure 3.1 the intervall R ∈ [54; 70] is shown.
After the cluster-finder program (described above) was executed, it was easy to identify the size of the
biggest cluster. As you see in figure 3.1, for this realization, there was a clear transition for the biggest
clustersize at a radius about R ∼ [59; 64], which translates into a filling factor

η = π2R
2 N

l2

=
π

10000
R2

∼ [1.09; 1.29]

which actually includes the best know estimate ηc = 1.128.
What has happened at the jump at radius R = 62.6? (At least) two clusters that were of a size < 4600 for
radius R = 62.5, with the increase of radii, merged into one cluster of size 7900. This merging of existing
structures into a much bigger structure because of a slight change in radius is the reason for this sharp
transition.

2the simplified writing this.clusternumber means: access the property clusternumber of the this’sphere in the array
of spheres
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10000 spheres thrown on 10000x10000 (19.1.000)
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Figure 3.1: The first found transition for one realization of 10000 random coordinates in
R2 ∩HCd=2(l = 10000) and decorating spheres with 128 different radii. It takes places somewhere be-
tween η = 1.09 (R = 59) and η = 1.29 (R = 64).

3.1.3 Smooth the Curve

A single realization of thrown coordinates is only one sample of what can happen at that specific
parameter-combination. Hence, the outcome cannot be generalized, the curve in figure 3.1 shows the
properties of that one sample, but not the general properties of the parameter-combination.
To smooth that curve and find the general behaviour, we have to perform statistics by repeating mea-
surements and calculating the average value of an observable. Please have a look at figure 3.2 to see the
smoothing effect of 40 repetitions. Each point in that diagram represents the average over 40 runs with
the same parameter, but each time newly thrown coordinates.

20000 spheres (2dim), 40 smoothing repetitions
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Figure 3.2: This diagram contains mean values of the two observables “biggest-clustersize” and “mean-
clustersize”. For each of the 60 different radii (→ filling factors), 40 samples were created and analyzed,
so this diagram contains 2400 realizations.

3.1.4 Dimensionality Dependence

The algorithm exhibits the expected ’time(N) = c ·O(N2)’-behaviour, the proportionality factor c could
be lowered by a factor 2 using some programming tricks (see chapter 6.4).
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In higher dimensions, much bigger vectors have to be handled, the overlap-checking with the ’length-of-
the-distance-vector’-calculation becomes slower. As a rule of thumb, in the C++ program, the time goes
linear with the dimension, e.g. it is doubled for the step dim = 2 to dim = 8 when N = 1000:

time(2dim) ∼ 1/2 · time(8dim)

3.1.5 Recursion vs. Iteration

In most computer science literature like [50], recursions are described to be a) stack-consuming and b)
slow. The underlying reason is the necessity (for the compiled program) to store all local variables of a
recursion-level on the stack until that recursion-level is reached again on the way up. Problem a) can
be solved by increasing the stack size (a rule of thumb that seems to be enough for the branching rate
and depth within this special divide-and-conquer program up to 500,000 spheres is 2MB stack-size), but
problem b) seemed to be worth considering.
Recursive programming gives an advantage in algorithmic-complexity (the code is easier to write and
understand) - but if the time-complexity suffered severely from that, it would be a bad trade-off. An
interesting iterative formulation of the same method (”check all spheres with all others once”) including
a Fortran code can be found in [69, Stoddard]:
At first, a link-table L(i) is initialized with L(i)=i. Then, in nested loops, the spheres are checked
with each other - and whenever there is an overlap, the two link-table-entries are swapped. The resulting
link-table consists of closed loops for each cluster that can be followed L(i) → L(L(i)) → L(L(L(i)))
→ . . . until = i again (then the loop is closed).
I have implemented the Stoddard-iteration and measured the needed time against the recursion - there is
no difference! Obviously the C++ - compilers treat that recursive code in a way that gives no disadvantage
over iterative formulation!

3.2 Divide-and-Conquer

The naive-count shows a O(N2) behaviour in time-complexity because each sphere is checked with all
others. In this easy-but-too-simple approach, the obvious locality of the problem is not exploited at all;
some spheres are very far away from each other and could just not be neighbours - but they are still
checked for overlap!
But how can one care only about close enough neighbours? The spheres have to be sorted somehow!
The first idea to sort them globally in a linear way (by their distance from the origin) before finding the
clusters, gave a little advantage for high densities, but almost none around the critical threshold or below
(see figure 3.3). Moreover, a linear sorting can only improve one direction - so while it might do some
good for 1-dimensional clustering, it is ineffective for higher dimensions.
What we need is sorting in several directions simultaneously. The resulting structure is a set of many
small areas containing only a few spheres that are already very close to each other - so each overlap-check
can be done with a higher probability for true - and most bonds (of far-away spheres) are not checked
anymore.
Those many, but small problems are then solved using the naive-cellcount described above. Such algo-
rithms are called ”divide-and-conquer”.
Then the counted areas have to be combined: Whenever two spheres from neighbouring boxes overlap,
their clusters merge into one bigger cluster. At some stage the clusternumbers of all spheres have to
be relabeled. A natural choice is to let the lowest clusternumber survive for the combined cluster 3. So
whenever two small clusters merge, all spheres get the lower clusternumber of the two.
Compared to the one-area naive-count, one will find the same solution much faster - but only above
a certain total number of spheres, because the dividing and combining takes time itself. Moreover, the
optimal balance between too many spheres per area (the disadvantages of the naive-count) and too many
areas with only few spheres (too much time for dividing and combining) had to be found experimentally
because it depends on the divide-and-combine algorithm and the effectiveness of the implementation.

3like in the Hoshen-Kopelman algorithm described below
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time for calculation (10000 spheres on 10000^2) - 19.1.000
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Figure 3.3: Execution time of the naive count of figure 3.1 for (a)[top] and (b)[middle] randomly chosen
and (c)[bottom] linearly sorted spheres in dim=2. (b) and (c) are optimized code versions (see chapter
6.4). One can clearly see that linear sorting doesn’t help much in the interesting range around the critical
point, only above.

3.2.1 Combine

Let’s consider two neighbouring ’areas’ or ’cells’ in which all clusters are found independently (their
clusternumbers are disjunct). When these two cells are to be combined, not all spheres are relevant, only
those inside two adjacent ’edges’ of width R (see figure 3.4). The width of the edge-stripes must be two
times the radius of the biggest sphere. Two clusters that merge into one will be called neighbour-clusters.

Figure 3.4: When combining two areas, only ’edgespheres’ must be checked for overlap. They lie in a
stripe of width 2R along the to-be-connected edges of the cells.

An array of lists of neighbour-clusters is created. The two lists of edgespheres are nestedly iterated and
all possible bonds are checked for overlap. Whenever two spheres overlap, their clusternumbers are added
to the list of neighbours of both clusternumbers in the array.
Now this cluster-connectivity structure has to be followed and merged to find all connected clusters that
will be identified. This information is stored in a second array of lists in which the smallest occurring
clusternumber is the index.
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Now we can relabel all spheres of the neighbour clusters to their new clusternumber, then relabel the
clusters and thus reduce the clustertable by using the now-empty clusternumbers.

Criticism

The described method works well, regardless of the dimension. Of course, the performance decreases for
higher dimensions because most spheres then lie in the (d− 1)dimensional ’surface’ of the adjacent cells.
Apart from implementing totally different, more efficient algorithms (see chapter 3.4), my program could
be further optimized especially in the “combine”-routine, because of this high-dimensions property. (see
chapter 7 for ideas).
An obvious improvement (that I see now looking into the structure) of the last step described above, would
be to relabel the clusters and spheres in one step, similiar to the Hoshen-Kopelman clustertable-approach
that does only one linear relabeling at the end (chapter 3.4.3).

3.2.2 Splitting

While developing my algorithm, the dimension-independence was a crucial request that demanded a
thorough abstraction level.
How are the cells stored? Which cells are neighbours? Which surfaces of the cells are adjacent with the
neighbouring “edge-stripes”? Which surfaces are at the outside of the big cube and don’t need to be
combined? Remember chapter 2.1.2: A d-dimensional hypercubic cell has 2d surfaces, it is surrounded by
3d − 1 other cells. So for a 2dim central cell (’central’ means: not at some of the surfaces), there are 8
cells around that are relevant for combining, but for 10dim, central cells have 59048 neighbouring cells
to be checked. And for open boundaries, this is only true for central cells, because e.g. a cell in one of
the 2d corners of the overall hypercube only has 2d − 1 filled neighbour cells, the remaining 3d − 2d cells
are outside the used area of coordinates and thus empty. Of course, it gets rather complicated to think
about all other combinations in between corner- and central-cells.
Again for algorithmic simplicity, I decided not to store the cell-structure explicitly, but to partially solve
the problem on every level inside a recursion that splits each cell into halves until a breaking condition is
reached. The total number of splits can be chosen, e.g. if 8 splits are wanted (→ 28 = 256 cells) in 3dim,
the recursion will do 3, 3 and 2 splits in the 3rd, 2nd and 1st dimensional direction. So in the recursion,
two variables are varied: the number of splits and the dimensional direction.
The routine is called “counters::dividecount” (please see the sourcecode in chapter A.3). At first it is
called with the whole set of unclustered spheres, the total number of wanted splits s is given and the
starting direction for splitting is D = dim.
Until s/D splits are done, the routine divides the spheres by their D-coordinate in the middle of the
intervall and calls itself for the “left” and the “right” part of it, with an increased splits-counter. Then,
on a recursion level on which sufficient splits for this direction are done, the routine calls itself for the
next lower direction D → D − 1. After the last direction (D = 1) is reached and all splitting recursions
are opened, the remaining spheres in this cell are analyzed for clusters, using the naive clusterfinder of
chapter 3.1.1.
On the way up in the recursion, the combining takes place. Because the splitting coordinate of the halves
is known on each recursion level, it is easy to call the combine-routine of the previous chapter 3.2.1.
To imagine how this algorithm works in 2 dimensions: A sheet of paper is folded s/2 times along one
direction, then s/2 times along the other direction. The small ”cells” are counted naively - and during
the unfolding of the paper the adjacent cells are checked for to-be-connected clusters within edges along
the fold-rim.

Criticism

The algorithm is very flexible and robust, especially because the work to store all cells and their cutting-
surfaces is done implicitly by the recursion - but therefore it needs some space on the stack to store
all intermediate data. It is not hard-coded for a certain dimensionality, so the algorithm works in any
dimension.
The big disadvantage over “boxing” is the frequent check of coordinates. A single sphere is checked 2 s

dim
times in each coordinate direction, once for cutting in halves and once if being an edgesphere.
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One advantage over “boxing” is the surprising effect that the box-size can be smaller than 2R without
loosing possible overlaps of spheres in more than next-neighbouring cells. As the combine-routine selects
all edgespheres in an edge of width 2R around the cutting-surface, those next-nearest-neighbour combi-
nations will simply be found on a subsequent combine-level on the way up through through the recursion.
We will see in the next chapter 3.2.3 that this gives the possibility to examine the optimal number of
cuts by trespassing that value and choosing “too-many” cuts.

3.2.3 Optimal Number of Cuts

The described algorithm can be called with a wanted total number of splits s, that give the number of
cells (= 2s). If we choose s = 0, the original naive-clusterfinder of chapter 3.1.1 is recovered. For more
splits s, the execution time sinks up to an optimal number of splits, then it rises again as you can see in
figure 3.5. For too few cells, the O(N2)-behaviour of the naive-clusterfinder decides about the duration;
for too many cells, the execution time is dominated by unneccessary combine-calls with their expensive
overlap-checking.
The optimal number of cells is a little lower than the limiting number of boxes of the boxing approach
(see chapter 3.4.1), probably because of the inelegant combine, especially in higher dimensions.
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Figure 3.5: The optimal number of splits soptimal(→ 2s = number of cells) depends on the
number of spheres N and their dimension d. In this example, the execution time is shown for
N ∈ {5, 000; 10, 000; 20, 000} and dim = 2 at criticality. s = 0 gives the naive clusterfinder of chap-
ter 3.1.1, the optimal number of splits for these configurations are soptimal = 6, 7 and 8, which accelerates
the execution by factors of 23, 71 and 136 compared to the naive counter.

3.2.4 Complexity O(Nx) with x < 2

All this tedious work gave a rewarding result: In the very first test of the new algorithm, it returned the
same cluster-structure, but performed about 180times faster than the naive clusterfinder.
I analyzed the time complexity, and found a behaviour much better than O(N2). Of course, the gain
strongly depends on the dimension and the number s of splits - in figure 3.6, you see the N -dependence
of the execution time for 2 and 6 dimensions (with optimal number of splits). The exponent of the O(Nα)
behaviour can be as good as α ∼ 1.2.
This improved time complexity made possible the examination of bigger systems with better statistics.
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Figure 3.6: Execution time for rising number of spheres N , in 2 and 6 dimensions. The splitting algorithm
performs like O(N1.2) for 2 dimensions and O(N1.7) for 6 dimensions.

3.3 Collecting the Results

Now that we have found all clusters, we can finally analyze the cluster size distribution, spanning prob-
ability, etc.

3.3.1 The Spanning Cluster

As mentioned in chapter 1.1.2, the occurrence of spanning clusters marks the critical threshold. At that
density, the previously unconnected small clusters form such a big structure that a path of overlap from
one side of the box to the other is formed.
After all clusters have been found, the cluster numbers are written into each sphere, so that it is easy
to extract all cluster numbers at the left and right edge. If the spheres are of size same size (radius R),
the edge must be of that width R to find all spheres that overlap the border; in the case of differently
sized spheres, the radius s.r of the sphere s itself is compared with the coordinate s.x[d] in the dth
space-direction.
Then the intersection of both sets of cluster numbers gives all numbers of spanning clusters:

leftedge={s ∈ spheres; s.x[d] < s.r}
rightedge={s ∈ spheres; L− s.x[d] < s.r}
with d =direction (e.g. d = 0 for x-axis), L =length of hypercube

if [clusternumbers(leftedge) ∩ clusternumbers(rightedge)] 6= {}
⇔ ∃ spanning cluster

Then a decision has to be made: What is the spanning point? It can be triggered by a cluster that
connects all dimensional directions (e.g. in 3dim, a cluster that spans in x-, y- and z-direction), or by a
cluster that spans at least one direction (e.g. in 3dim, a cluster that spans in x-, y- or z-direction), or by
spanning in a certain direction.
All these criteria give the same critical point for the limit N →∞, but in general, for finite realizations,
the second happens earlier than the third which happens earlier than the first.
I have chosen the third criterion, that the d = 0-direction (“x-axis-direction”) must be spanned.
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3.3.2 The Histogram of Clustersizes

The main outcome of a realization besides the spanning-question is the histogram of occuring clustersizes.
This distribution is an important aspect of the cluster-structure, in addition to that it “compresses” the
information of cluster-forms, locations, etc. to only one property: the sizes.
In figure 3.7 you see an averaged histogram of 250 subcritical (η = 0.5 · ηcrit) experiments with N = 5000
two-dimensional discs.
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Figure 3.7: Histogram of clustersizes for N = 5000 at subcritical η = 0.5 · ηcrit after 250 averaging runs.
In the C++ program only the biggest and mean clustersize and the number-of-clusters is kept from these
histograms (see chapter 3.3.3). In the LogPlot, you see that the frequency of clustersizes falls exponentially
within a wide range.
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3.3.3 Keeping and Dropping Data

Most of the observables have to be measured very often to get a good statistics because especially in the
critical range, all fluctuations are big. The same experiment has to be done many times, so one crucial
question is the amount of experimental results that are kept of each realization. It is necessary to discard
lots of data.
After the ClusterFinder routine has finished its work, the resulting cluster structure is stored in the spheres
and in an array of cluster lists. Only the visualization program (see chapter 4) uses these informations
completely to show each sphere in a colour depending on the clustersize.
For the numerical part of the program, a histogram H(s) of clustersizes s like figure 3.7 is generated out
of the clusterarray of one realization and then all further information about the clusters is dropped.
Then this histogram is “compressed” even more, to only three parameters:

• the number of clusters =
∑

s H(s)

• the size of the biggest cluster = max{s|H(s) 6= 0}

• the mean size of finite clusters =
∑

s,if not spanning cluster H(s)s2

These three and the spanning-directions are written into a datafile and kept in memory for statistical
analysis, and then the next realization is thrown.

3.4 Other Methods

I decided to use the recursive splitting algorithm described in chapter 3.2.2, mostly because I wanted to
avoid the difficult task to define the neighbourhood of a box in d-dim space with open boundaries.
If one wants a fast algorithm in only 2 or 3 dimensions, other approaches might be useful:

3.4.1 Boxing

Especially for definite dimensions like 2- or 3dim problems, it is not too difficult to create a gridded struc-
ture with small boxes each holding only a tiny fraction of all spheres. The method divides each coordinate
direction into n ’slots’, the N spheres are sorted into the ndim boxes in linear time by N · d divisions (for
all coordinates). Then the partial problems are solved in each box using a naive ClusterFinder (mean
time complexity O(( N

ndim )2), afterwards the clusters in the boxes are combined with their neighbours.
Important to realize is that the boxes can be too small. If the boxlength is < 2 · radius, two spheres of
next-next-nearest neighbour boxes might overlap. Because of the O(N2)-behaviour inside the boxes, the
optimal boxsize is the smallest possible using that condition.

3.4.2 Boxing Without a Naive Local ClusterFinder

Boxing can be done the same way as described in the previous chapter, but with boxes of which the
d-dim diagonal is smaller than a diameter of the smallest sphere:

box-diagonal < 2R

box-length <
1√
d
2R

Then all spheres inside a box must be overlapping, so no local in-box-ClusterFinder has to be started -
all spheres in one box automatically belong to one cluster.
This advantage has a drawback, however. With such small boxes, not only next-nearest-neighbour boxes
contain spheres that can overlap, also next-next-nearest-neighbour boxes have to be checked while com-
bining the local clusters.
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3.4.3 The Hoshen-Kopelman Algorithm

In 1978, Hoshen and Kopelman [24] found a good way of avoiding repeated relabeling within the 2dim
lattice when two clusters merge. Their algorithm can thus scan the lattice in linear time, the cluster-
relabeling happens only once at the end. Or not at all - because it’s not necessary to go back to previously
examined areas, one can even discard the already scanned lattice while it is still being examined, saving
lots of memory by only keeping the cluster-information.
They keep a clusternumber-array which holds all clustersizes (positive numbers) and clusterlinks (negative
numbers) at the same time. When the next lattice point is analyzed, and the neighbours to the top and to
the left both are occupied and from different clusters, the cluster with the bigger number is merged into
the cluster with the smaller number by adding its size the the other’s size and giving it a negative entry
that links to the other cluster. At the end of the run, the array’s positive numbers are the clustersizes.
This approach can be adapted to continuum percolation by combination of boxing, local (naive) Clus-
terfinder and combining overlapping clusters in half of the surrounding 3d−1 neighbour boxes, so in 2dim
not only the left and top box (like on the lattice), but also left-top and left-bottom. The Mathematica c©

program in Appendix A.2.2 is my first attempt for 2dim continuum percolation - and it actually has a
linear execution time behaviour of

time(N) ∼ N

900
seconds
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Chapter 4

Visualization

I have written two completely different programs, one “numerical” with console- and datafile output (the
results will be discussed in chapter 5), the other with a graphical frontend and output. Both use the same
core algorithms.
(Not only) for this chapter, you should download the Win32 visualization-program from:

• www.AndreasKrueger.de/thesis/exe

It uses the strategies described in the previous chapter to find all clusters and shows them graphically.
The program runs on any Windows Operating system, on a Dos-PC or in vmware virtual machines or
Win-in-a-box; without any memory problems only in Windows NT, though.
In the newest version you can already start a non-stop show of clustering spheres - which gives a nice
graphical effect and helps to understand percolation in a more intuitive way.

4.1 YGWYS - You Get What You See

I believe that visualization is a crucial step in understanding problems. Especially complex phenomena can
be studied using our human visual system with its marvellous ability to grasp the essence of structures.
Not-so-obvious errors in algorithms might produce artefacts that can be seen and traced easily if the
program output is visualized somehow.
Besides the didactic importance to be able to show to others what you are talking about and studying,
these computer toys enable the playing mode in us with its intuitive intelligence.
Higher dimensional spaces might be impossible to imagine visually, but the attempt to show them helps
to guess their properties.
During my work, programming has become more and more visualizing, especially since I have started
to use Mathematica c© (where lots of graphical routines are readily available), developing algorithms has
become more and more a coding-looking-coding-looking approach, finding solutions by visually analyzing
the question ... one might state: You Get What You See!

4.2 Principles of the Program

Please have a look at figure 4.1 to see the frontend of the program. It consists of menus to control the
parameters and to switch between different visualization “shows”, and of an empty area in which the
spheres can be drawn as discs.
After the start and initialize, a box has to be pulled for to draw the spheres inside. Internally, it will
always be a square, so if the box pulled on the screen is rectangular, the spheres become (oriented)
ellipsoids.
First, all spheres are drawn once in white to get a feeling for the size of the problem, then the clusterfinder
starts its work. On a 1Ghz CPU, it takes about 8 seconds for 160,000 spheres to be clustered in 2D.
The spheres of the biggest cluster are drawn in the strongest colour, all other spheres get less intense
colours depending on the ratio of their clustersize to the biggest clustersize.
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Figure 4.1: The frontend of the Win32 program for 2D with rising disc radius, and for 3D with exam-
ples of the different “shows”. Especially the 3D version generates beautiful short-films (choose through
the menus “initialize; N=160000; increasing z-sorted; 3D-effect”); and films can’t be printed, so please
download the program to your computer.

N.B.: At the moment there are no tick-marks when you enable a menu switch, but a status window can
be opened to check the parameters.

The Parameters Menu

A wide range of numbers of spheres can be chosen, at the moment 39-160,000, the radius of all spheres
can be set as a fraction of the theoretical critical filling factor (ηcrit → “1.0“ in all dimensions), especially
accurately close to the critical point (0.95-1.05). Once clustered spheres are not clustered - only drawn -
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again when you click-and-pull a new box; only after “throw new” or choosing a different N or R in the
parameters menu, the algorithm is started again. This saves time when you try different visualizations.

The Visualize Menu

I experimented with different “shows” to draw the spheres:

• clusterwise: The spheres are drawn cluster-by-cluster
The xy, xz or xZ plane is used for the screen coordinates of the projected spheres, the remaining
coordinates are just dropped.

• random: The spheres are drawn in their original random order (using the xy plane for screen-disc
coordinates)

• z order: the spheres are sorted by their z-coordinate, then they are drawn from back to front or
from front to back

• 3D-effect: spheres in the back are smaller and their coordinates inside a smaller rectangle than
spheres in the front (scaled by intercept theorems).

• stop after half of the spheres: one can hereby see a central cutting plane

At the moment the shows are executed one after the other, so a 5 seconds pause in between can be
enabled to separate them.

The Screenspheres Menu

When a spanning cluster occurs (from left to right), the spanning spheres can be drawn in red during
the first clusterwise-show, if you enable that option.
In more than 2dimensions, the screen with its two-dimensionality gets rather crowded, so I implemented
an artificial reduction of the screenspheres. You can choose to have them drawn smaller to look beyond
the last-drawn surface - the internal radius for overlap checking and clustering is not changed by that.
And last but not least, the surrounding black circles of the discs can be switched off, neccessary for to
draw N = 160000 in dim= 2.

The Other Menus

In the first menu, you have to initialize the arrays once after each program start - and there, you can
always throw a new set of points to look at other realizations. The clustering is then done with the
next click-and-pull. The Status menu lets a N,R, r - window pop up to tell about the actual settings.
The Info menu gives a short introduction and with Goodbye, you can leave the program or send me an
eMail before.
The Geometry menu was the purpose of the original Win32-program that I found in the manual of my
compiler. Windows-programming for menus, mouse and graphics is highly non-trivial, so I was thankful
to have this instructive example - and I simply plugged-in all my routines.

4.3 Higher Dimensional Spaces

It is rather easy to show all discs in 2D, only for high N like 80000 or 160000 the surrounding black circle
should be switched off (screenspheres menu).
For 3D, I suggest the following settings in the visualisation menu:

• Sort in third direction, ordered by increasing z-coordinate. Then the spheres are drawn from
back to front.

• pseudo 3D-effect; a central projection with the spheres smaller and closer at the back than at the
front

• perhaps: stop after half of the spheres, then you can examine the central plane of the cube.
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And perhaps in the screenspheres menu

• (for small N like 312 or 2500): pause after drawing one sphere. Then you can see the clusters
slowly growing.

• 75% screenspheres-radius; to be able to look through

In 4D, you can also use the above settings for 3D, moreover, you should reduce the screenspheres size
further more (50% or 25%), but mainly you need your imagination to replace the unused fourth dimen-
sional coordinate. The effect is that some spheres are in one cluster but don’t seem to be, because they
overlap in their fourth direction.

4.4 Plans

As mentioned before, the visualization program was very useful to find flaws in the ClusterFinder-routine
and to be able to show percolation to non-mathematicians or non-physicists. But it is far from being
intuitive and it uses only very few ideas to show the phenomena.

4.4.1 Ideas

The program GUI should really be redesigned and rewritten to be more useful and didactic. Some of the
ideas are the following. If you find something that is not mentioned here, but you would like to see or
have implemented, please tell me.

Visualization

• Radius lens: Show one disc enlarged or a magnified part of the whole area, to get a feeling for the
growing radius

• Magnification: Zoom into a selected part of a cluster to see the overlap structure

• Colour lens: Colour the spheres by the position of their cluster in the histogram, not by the linear
function only depending on the ratio to the biggest cluster. (At the moment most small clusters
aren’t coloured anymore as soon as a bigger cluster appears.) See appendix A.2.2 for a first fully
functional - though slow - implementation of this idea.

• The biggest (or spanning) only: Up to half of the spheres, the smaller clusters are shown, above only
the biggest (spanning) continues all the way up. This gives an impressive 3-dimensional pictures and
is used e.g. in “grain growth” visualizations [27]. Or only the biggest (spanning) cluster is shown,
no smaller ones at all.

• Clusternumbers: not by clustersize but by their clusternumbers, the spheres are shown in different
colours

• Films: for a range of radii R (or number N), several pictures are generated and then shown as a
short film.

• Continuous film: After one cube has been clustered and shown, a new set of spheres is thrown,
clustered and shown. With sorting-by-z-coordinate, this will give the impression of continuously
moving out.

• Legend: The palette of colours is related to numbers

• Rare events: Several spanning clusters, very early or late spanning, etc.

Statistics

• Display of observables: spanning or not, size of biggest cluster, mean clustersize, number of clusters

• Smoothing: Statistics over many runs are cumulated

• Histogram: The clustersizes can be observed while traversing the critical threshold
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• Plots: The above measurements shown as plots or histograms during a film, e.g. a film in which the
radius grows

Handling

• Input: All parameters should be input directly or by a slider, not only by constant menu values

• Find threshold: A spanning cluster-threshold-finder selects exactly that radius at which the transi-
tion takes place

• Mouse-click info: When a sphere is clicked-on, the clusternumber and size is given

• Progress and status bar: It shows how long the Clusterfinder will need

• Palette: create an own palette of colour transitions for each show

The Program Skeleton

• Save and load parameters, realizations (thrown coordinates) and palettes

• MDI: several windows in one application, a control-window to select the parameters with buttons
and sliders

• Print pictures, histograms and parameters

• A symbol- and statusline for button-click commands, statistical results and progress bar

• A database connection for all previous runs - to be able to combine the visual output and a statistical
analysis

• A context-help function and manual

4.4.2 OpenSource Computing and Visualization Project

The project would be a bigger one, rather time-consuming and probably too much for one person, but the
result could be rewarding and useful, especially for lectures and talks about percolation and hyperspaces.
Other people are working on the same or on similar programs, so why not create an environment for
cooperative developing?
The program must run on any platform and operating system, so it should probably be in Java or C++
using Qt (Qt is the portable Frontend library for Windows and Linux that KDE is programmed with
[41]). For the visualization, Open Source libraries on top of OpenGL (a fast graphics standard) could be
used like SGL [47] or SDL [46]; and for drawing plots and histograms perhaps “root” from the Cern [67]?
Because computing power and simulation time is expensive, it could be interesting and challenging to
create a simulation client that uses its host computer for simulations and communicates its results by
TCP/IP to a database-server, on which several results are then combined. The reward for the owner of
the computer (apart from the honour to work for the sciences) could be a beautiful screensaver on which
parts of the simulations are drawn.
The SETI@home project [68] takes a similar approach, for which about 3.2 million members have spon-
sored 700,000 years (or 9.7 · 1020 floating point operations) of computing power (until 29.8.2001) to
calculate Fourier analysis’ of incoming data from a telescope.
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Chapter 5

The Numerical Results

This is the most important and thus most extensive chapter. It contains results that were measured for
the first time in this accuracy.
It first motivates why exactly the thresholds were studied so excessively, then it names two possibilities
how to locate a threshold.
In section 5.3, the long way of data analysis and compression from millions of single measurements to a
dimension dependence formula is shown step by step; the data found by interval nesting is averaged and
the distribution around the mean is examined. Then the mean is extrapolated with N → ∞ to get the
limit threshold for each dimension 1-11 (you find that most important table on page 52).
Once those 10 critical points were known, I constructed fit functions that sum up the knowledge about
all of them (equations (5.3) and (5.4)). In the end they are related to the mean number of neighbours
and the actually occupied volume fraction at criticality.
Section 5.4 then exploits that the same strategy can be used to identify other points below and above the
critical threshold, with the goal of limiting later simulations to a definite and narrow interval of filling
factors that are interesting to study. Figure 5.16 shows these results in one diagram.
At last, in section 5.5 the one dimensional case is treated; one can see clearly in the simulation data why
that case is called ’degenerate’ and can be solved analytically so easily.
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Figure 5.1: Fitting the experimental data to get the critical exponents of the singularity is impossible
unless you have a very good knowledge of the position of the critical threshold. While varying ηc (here
called ff.crit) by only 1%, the exponent differs by 100%.
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5.1 Restriction to the Thresholds

The main characteristics of the phase transition are the exponents describing the singularity.
While trying to fit the simulation data around the critical point to a function |η−ηc|ω, a strong dependency
of ω on the value of ηc can be noticed - and this dispersion makes the determination of the exponents
very difficult (see figure 5.1).
So very accurate values of ηc are needed to find the critical exponents. When I decided to concentrate
on that I didn’t expect it to be so time consuming (because of coding and simulation time). Without
an explicit decision before, it has now become the main result of this work, even when it is sometimes
stated, that the search of critical thresholds is not the most interesting aspect of percolation theory [6] -
it is still a necessity for any numerical treatment of the problem.
The exponents are still unknown to me, but they are widely accepted to be identical to the lattice
percolation exponents - and those were excessively studied during the last decades and are known to a
high accuracy.

5.2 Methods to Find ηc

5.2.1 Maxima of Fluctuation

Let Mi be measurements and σ =
∑

i(Mi −M)2 =< M2 > − < M >2 the variance (or fluctuation)
of the mean value M (see chapter 2.4.1). At the critical point, the outcome of measurements of e.g. the
size of the biggest cluster Bi fluctuates most.
This maximum of fluctuation can be used as a criterion to locate the transition point, but it is a very
expensive method. Because of the second moment involved, large deviations from the mean fluctuation
have strong influence, so that a very good statistics is needed to smooth the fluctuation curve - many
realizations have to be summed up.
At first I tried to use that method to locate the threshold; in figure 5.2 you can see that the fluctuation
curve takes a shape similar to a Gaussian. The center of this Gaussian actually gives a good estimate
already (ηc = 1.132), but too many repetitions had to be done, so I dropped that method again.

1,06 1,07 1,08 1,09 1,10 1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,18 1,19 1,20 1,21 1,22 1,23

0,00E+000

5,00E+008

1,00E+009

1,50E+009

2,00E+009

 Gauss Fit of  
(Chi^2 = 2.66E15)
y0 10941709   ± 5317617
w 0.028          ± 0.0003
A 67429320   ± 707267
xc         1.132           ± 0.00014

Fluctuation of the mean as a criterion for the location of the critical threshold 
(2dim, 320000 spheres)

 fluctuation of <biggest clustersize>
 Gauss fit with center at 1.132

flu
ct

ua
tio

n 
of

 th
e 

m
ea

n 
<b

ig
ge

st
 c

lu
st

er
si

ze
>

fillingfactor

Figure 5.2: The fluctuation of the observable “size of the biggest cluster” exhibits a maximum at the
critical point. This method gives the critical point - but is not very efficient due to the many repetitions
necessary to get a smooth curve.

45



5.2.2 A Spanning-Cluster Occurs

The original definition of percolation: “occurrence of a cluster that spans any given space” (see chap-
ter 1.1.2) is the direct prescription how to identify the critical percolation point.
In each realization of points, the question “spanning or not” can be used to adjust the radius of all
decorating spheres to exactly the value (resp. intervall) below which there is no spanning cluster and
above which there is a spanning cluster (please see chapter 5.3.1 for the intervall nesting routine); the
center of such an intervall and the width of that intervall give the “critical” filling factor η ±∆η for that
realization.
Then for many realizations, the numerical mean value < ηc(N, d) > can be averaged, for which the
spanning occurs in a d-dimensional system with N spheres.
Finally, the extrapolation for rising system size (= number-of-spheres N) gives the (thermodynamical
limit of the) percolation point in that dimension, the critical point.

Measure the Mean of 0-1 Transitions

For a single realization of N sphere-centers thrown into a box ld, there is exactly one radius (and thus
filling factor), for which a spanning-cluster occurs. The filling factor-dependant condition ”does (not)
span the area” gives a false/true-transition at the wanted filling factor. This point can be found by
intervall-nesting up to a given, but arbitrary accuracy.
Other such points might be similarly interesting. They can be found by the same algorithm as soon as
that transition can be formulated as a false-true transition at that point. The following points are already
implemented in the C++ program, but (partly) still lack numerical results:

1. a spanning cluster from ”left” to ”right” (first coordinate)
- as described above, the (finite-size) critical point,

2. a spanning cluster connects all sides of the hypercube ∼ “spanning-in-all-directions”,
an alternative definition of the critical point

3. all spheres are in one cluster → number-of-clusters == 1
(the highest ”interesting” filling factor, let’s call it “saturation point”)

4. a definite number of clusters exists
#clusters
#spheres ≤ a with a ∈]0; 1]

• a == 1 could be seen as the onset of clustering, but even for very small radii ∼ 0, two
spheres might be already overlapping, so a sharp ==1 condition is not practical for finite
systems

• a == 0.9 seems to be a better point (heuristically) to look for
because the position is left of the critical point for all dimensions up to dim=11

• a == 0 is not possible for finite N , the smallest possible is a == 1
N

(all N spheres are in 1 cluster - the saturation point)

5. the biggest cluster contains a definite mass (B:=mass of biggest-cluster)
B

#spheres ≥ a with a ∈]0; 1]

• a == 1 gives transition no.3, the saturation point

• a == 0.5 could perhaps be an interesting point for practical applications because it can be
measured easily:
Half of the spheres are clustered in the biggest cluster

Of course, other conditions could be invented to study certain points of the percolation curve - as long
as they are formulated in a false/true - transition, it will be easy to plug them into the existing C++ -
program.
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5.3 From the Appearance of a Spanning Cluster in One Real-
ization to a Dimension-Dependence-Formula

N.B.:
We will soon extrapolate from finite to infinite systems (only there can be critical transitions!), but
sometimes here the spanning cluster-transition point for finite systems is already called ”critical”.

5.3.1 Find the Transition in One Realization of Thrown Centerpoints by an
Intervall-Nesting-Algorithm

Now let’s come back from the generalization of the previous chapter to the one special point on the
percolation curve, the appearance-of-spanning-cluster transition-point.
For a given number N of points in a given area ld = 1, the step-function is a function of the radius only:

stepfn = f(R) = (∃spanningcluster?) (5.1)
∈ {false, true}

This stepfunction (that switches to true for the percolating domain) can now be used for an intervall-
nesting routine (steps 1-4 below, shown in figure 5.3), and an averaging over many of those nesting-results
(steps 5-6):

1. Take the center of the last intervall as the new left border, if stepfn(center) == false and as the
new right border, if stepfn(center) == true.

2. back to 1. until 3. is true

3. The intervall is halved until the wanted precision ∆target is reached:
The result is Rcrit

i ±∆Ri with ∆Ri < ∆target and ∆Ri = 1
2 · length of interval.

4. With the constant l and N, this radius is transformed into a filling factor:
Ri ±∆Ri → ηi ±∆ηi

5. Now the sum over many realizations n is taken and the mean < ηcrit > is found
(back to 1. with a new centerpoint-realization, until 6. ist true)

6. until
√

<variance(ηcrit)>
n < wanted accuracy

Then, the resulting < ηcrit(N, dim) > ±∆ is stored and a new configuration (N, dim) in parameter space
can be simulated. It is a good idea to double N in the next step, because then one can assume that the
variance of occuring filling factors sinks with the rising system size. If the minimum and maximum of
filling factors of all realization for N have been recorded, they can be narrowed a bit and used as the new
starting intervall for N → 2N .

5.3.2 Mean, Variance, Skewness and Kurtosis of the Results

As you can see in figure 5.4, especially for low N the distribution of spanning-cluster-appearance-points
doesn’t seem to be symmetric around the mean value. There are some very late events but not as many
early spanning-realizations.
Thus the mean value is not the most probable like in a symmetric distribution. This brought up the
question of statistical observables for measured data distributions. Consult chapter 2.4.2 for the definitions
of mean, variance, skewness and kurtosis.
Please have a look at figures 5.5 and 5.6 to see all four parameters for 78 and for 20000 spheres. The
skewness in the first case (small number of spheres N) is obviously far from being zero - so the distribution
is skewed to the left side, the mean value is thus only a rough estimator for the whole distribution - but
the distribution tends to become symmetric for high N (figure 5.6).
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Figure 5.3: Find a certain filling factor that is located by a false-true stepfunction, using intervall-nesting.
While a Fibonacci-search is the most effective to locate a minimum (divide the intervall into 1/2, 2/3,
3/5, 5/8, . . ., 0.618) - in this case, locating a 0-1 transition, the simple 0.5-dividing is the best.
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Figure 5.4: 500 intervalls for the spanning-transition and the mean value (red) for N = 78. Each datapoint
with errorbar represents one realization of thrown coordinates. The position on the filling factor-axes was
found by intervall nesting with varied radius for the decorating spheres until the intervall “doesn’t span
/ spans” was shrunk to the shown error-bar size 1.2%.
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Figure 5.5: Mean, variance, skewness and kurtosis for N = 78 spheres and 500 realizations (dim=2)
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Figure 5.6: Mean, variance, skewness and kurtosis for N = 20000 spheres and 250 realizations (dim=2)
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5.3.3 The Measurements: Min, Max, Mean and Variance

As seen before, the intervall of occuring measurements for the critical filling factor shrinks for rising
system size (number-of-spheres N). In figure 5.7, the minimal and the maximal occuring filling factors
are shown together with the mean values, the bars giving the standard deviation.
The contracting behaviour of that intervall is an important property of the critical point in percolation:
The variance tends to zero for N →∞.
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The occurring measurements: min, max and mean with variance

N-dependance of critical fillingfactor (2dim)
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Figure 5.7: The maximal, minimal and average value of the percolation threshold, shown as functions of
the rising system size (number-of-spheres N).

5.3.4 The Extrapolation N →∞
All the realizations (of the previous chapters) for one given number N of spheres result in one mean value
< ηcrit(N, d) > for each of the spanning-transition thresholds of a d dimensional system with N spheres.
Now all these mean values can be studied, one can plot the N-dependence of the transition point. The
spanning cluster occurs a little bit earlier for many spheres N than for few (see figure 5.8).
For the limiting case of an infinite number of spheres (”thermodynamical limit”) this dependence must
now be extrapolated to N → ∞. An easy and natural fitting function (that fits the measured data
remarkably well!) is an allometric power law with negative exponent c (to have a vanishing ∞-limit) and
an offset-value for the N →∞ case:

ηcrit(N) = a + bN c, (5.2)

For the numerical data in 2 dimensions this gives a = ηcrit(N →∞) = 1.1282, the results for the critical
threshold in higher dimensions are given in table 5.1.
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Figure 5.8: N-dependence of the critical filling factor (same data as figure 5.7, but the mean value only).
Each datapoint represents one averaged mean value (i.e. the red line in in figure 5.4 for N = 78).
The more the spheres, the earlier the spanning cluster appears (in terms of filling factor). The fit-
function (5.2) extrapolates to N →∞; and the resulting ∞-filling factor for two-dimensional percolation
is ηcrit = 1.1282

Table 5.1: The most important results in this paper: The critical thresholds and the other two
fit-function parameters b and c in the allometric fit (5.2) for dimensions 2-11. For the interpretation of
the last column, please see chapter 5.3.5

dimension a = ηcrit(∞) b c = the exponent ηcrit(∞) · 2d

2 1.1282 ± 0.0015 1.96 ± 0.33 -0.734 ± 0.044 4.51 ± 0.01
3 0.3416 ± 0.0024 0.738 ± 0.14 -0.462 ± 0.042 2.73 ± 0.02
4 0.1300 ± 0.00095 0.614 ± 0.085 -0.520 ± 0.031 2.08 ± 0.02
5 0.0543 ± 0.00030 0.433 ± 0.039 -0.560 ± 0.025 1.74 ± 0.01
6 0.02346 ± 0.00028 0.235 ± 0.025 -0.534 ± 0.025 1.50 ± 0.02
7 0.0105 ± 0.00017 0.122 ± 0.011 -0.519 ± 0.022 1.34 ± 0.02
8 0.00481 ± 0.00011 0.0714 ± 0.0074 -0.524 ± 0.025 1.23 ± 0.03
9 0.00227 ± 0.00005 0.0489 ± 0.0048 -0.564 ± 0.023 1.16 ± 0.03
10 0.00106 ± 0.000032 0.0273 ± 0.0028 -0.567 ± 0.025 1.09 ± 0.03
11 0.000505 ± 0.000015 0.0161 ± 0.0013 -0.588 ± 0.020 1.03 ± 0.03
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5.3.5 The Threshold Formula ηc = ηc(dim)

The Critical Filling factor

Once the extrapolations of chapter 5.3.4 were done for the numerical data in every dimension, the dimen-
sion dependence of ηcrit(d) = ηcrit(d,N →∞) could be examined (first column in table 5.1). Figure 5.9
shows the results on a linear-linear and on a log-lin scale. The latter is important for higher dimensions,
because the filling factor quickly drops to very low values in high dimensions.
Also shown are the two best fit function I could find:

ηcrit,1(d) ∼= [a1 + b1(d− 1)c1 ]d (5.3)

ηcrit,2(d) ∼= [a2 + b2(d− 1)c2 ]
1
2d

(5.4)

with a1 = 0.480, b1 = 0.588, c1 = −1.462
and a2 = 0.4139, b2 = 4.1038, c2 = −0.8231
At first, these (heuristical) fit functions were just born from the necessity to re-implement the numerical
results into the C++ program for further runs. Nevertheless, one can see that they reflect details of the
examined dimension-dependence:

• The ηcrit →∞ for the 1-dimensional case (see chapter 5.5) is modelled into the (d− 1).

• For d →∞, ηcrit becomes 0.48d if the first fit function holds

I’d very much appreciate better fit-functions of table 5.1 if you find one!
N.B.: A similiar approach was undertaken by Galam and Mauger [19]; for many (very different!) lattice
percolation models (square, honeycomb, ..., d-dimensional), they succeeded in fitting the site- and bond-
percolation thresholds into one dimension-dependent invariant with three parameters.
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Figure 5.9: The measured critical filling factor ηcrit(d) and the fits (5.3) and (5.4) in a lin-lin plot and in
a log-lin plot to see the higher dimensional behaviour.
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The Critical Number of Neighbours

With the insights of chapter 2.3.2 one can get the mean number of neighbours per sphere at criticality,
by calculating the Poisson mean number of other sphere-centers within a sphere of doubled radius. The
last column of table 5.1 gives these numbers, they are plotted in figure 5.10.
The results are more accurate, but mostly in agreement with [1], where Alon, Drory and Balberg give
preliminary results of their Monte Carlo simulations for dim ∈ [2, 6] and N = 20000.
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Figure 5.10: The necessary number of neighbours per sphere at the critical point in d dimensions as a
linear and as a log-log plot. The second Fit-function seems to fit the data better. (N.B.: The y-axis labels
are wrong: They should be ”number of neighbours”)

Blanchard, Gandolfo et. al. have recently published a paper [20] on “k-clusters” as the building blocks of
the infinite cluster at criticality - and they find for 2 dimensions that k must be larger than 4 to get into
the critical domain. Their “k-clusters” (similiar to the “k-mers” of Quintanilla and Torquato [42]) with
k neighbours in a mean distance r0 < R from the center-sphere of size R are regarded as the ’building
blocks’ of a clustering process, which needs at least k ≥ 4 neighbours to have long-range connectivity, i.e.
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where the k-clusters merge into one spanning cluster.
that in a wider corona there is no further sphere, so true k-clusters are studied.
At first, it seems illogical that a mean number of neighbours < 2 is enough to get a spanning cluster (in
dimensions d > 4, see table 5.1 and figure 5.10), but one mustn’t forget all those spheres that are not part
of the spanning cluster but still contribute to this average; moreover, there are rare but existing cases in
the Poisson distribution of neighbour-degrees higher than the mean value that contribute to connectivity.
And finally, the critical point only gives the density for the onset of percolation, at which a spanning
cluster becomes possible for the first time with probability P > 0, but not with P = 1.
To clarify these questions, it could be interesting to actually measure the neighbour-degree in a simulation,
a) to see if the Poisson argument holds and b) to only count those spheres inside the spanning cluster to
measure the neighbour degree inside the critical spanning cluster.

The Critical Particle Phase Fraction

While the critical filling factor gives the ratio of thrown spheres over provided space (overlapping regions
are counted multiply), the critical particle phase fraction (see chapter 2.2.1) tells us how much of the
provided space has to be actually filled until that percolation appears.
The filling factor is used in most publications, but some of them give their results in terms of the Occupied
Volume Fraction, the most accurate result for 2 dimensions currently being in [43]:

φlit
c (d = 2) = 0.676339(4)

This is in excellent agreement with the results gotten in this work, because for 2 dimensions, I measured
(see table 5.2):

φhere
c (d = 2) = 0.67638± 0.0005

In figure 5.11 the dimension-dependence of this parameter is shown, a plot of table 5.2. You can see, that
for 2 dimensional continuum percolation, 67.6% of the provided space have to be filled, for 3dimensional
percolation 28.9% . . .

The data seems to follow a straight line in log-lin plot, so it was fitted to the falling exponential

FIT[φcrit(d)] = exp (−0.7998 · (dim− 1.38263)) (5.5)
= 0.4494dim · 3.0218 (5.6)

but actually it curves perceivably around that straight line and diverges from it for low dimensions (you
can clearly see that in the ”Fit”-row of table 5.2).

Table 5.2: The measured particle phase fraction (chapter 2.2.1) φcrit(d) for criticality shows an exponential
decay for rising dimensions.

dim 1 2 3 4 5 7 8 9 10 11
φcrit(d) 1 0,67638 0,28937 0,12190 0,052852 0,023187 0,0104451 0,00479845 0,00226743 0,00105944 0,000504873

± 0 0,000485 0,00171 0,000834 0,000284 0,000270 0,000168 0,000109 0,0000499 0,0000320 0,0000145
Fit 1,35 0,61 0,274 0,123 0,0554 0,0249 0,0112 0,00503 0,00226 0,00102 0,000456
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Figure 5.11: The measured critical particle phase fraction φcrit(d) (see chapter 2.2.1) in a log-lin plot (to
show the higher dimensional behaviour). The fit function only represents the general trend, especially for
low dimensions, it does not fit well (see table 5.2).
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5.4 Other Points Than the Critical Threshold

As mentioned before, not only the critical point might be interesting to study. Especially the saturation
point (where all spheres belong to one cluster) is important to know (above no further simulations are
needed). It lies far above the critical point.
For all later algorithms that will scan a whole range of filling factors below, at and above the critical
threshold, a lower and a higher limit for the scan is needed.
I didn’t succeed in finding an equally natural point as the saturation point, but below the critical threshold.
Thus, I experimentally chose a point that stays below the critical point at least for the first 11 dimensions,
the “10%-clustering-point”, where the number of clusters is 90% of the number of spheres N , so almost
all spheres are still separated from each other.
Moreover, it turned out that also the data for the rather natural saturation point could not be expressed
only by the space dimension, independently of the number of spheres. So in the end, I chose another
point shortly before that saturation point, the “99%-clustering-point”, where the number-of-clusters is
only 1% of the number-of-spheres N , so almost all spheres are clustered.

5.4.1 The 10%-Clustering-Point

The “10%-clustering-point” simulation data for a rising number of spheres N was analyzed in the same
way as the finite-size-scaling for the critical threshold ηc(dim) described in chapters 5.3.1-5.3.4; so for
each configuration (dim, N) the mean filling factor was found as an average over many repetitions, then
all the mean values were extrapolated to (dim, N →∞) and after that the shown dimension dependence
was analyzed.
A rather good heuristical fit-function for the dimension-dependence seems to be

η10%−clustering(dim) = a · cdim (5.7)

with a = 0.16762, c = 0.53439.
Please have a look at figure 5.12 to see a plot of the experimental data and that fit-function.

1 2 3 4 5 6 7 8 9 10 11

1E-4

1E-3

0,01

0,1

 ff
NOC90%

 (dim, N -> infinity)

 Fit: ff(dim) = a * c dim

 Fit: ff(dim) = a * c dim

(Chi^2 = 0.01075)
a 0.16762  ±0.01205
c 0.53439  ±0.00575

NOC is 90% of the number-of-spheres N

dimension-dependence of   ff
noc90%

 ( N -> infinity )

The fillingfactor at which the number-of-clusters 

fil
lin

gf
ac

to
r

dim

Figure 5.12: The 10%-clustering point at which the number-of-clusters is 90% of the number-of-spheres N .
Experimental data after finite-size scaling, and the fit-function (5.7)
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5.4.2 The Saturation Point

The saturation point is the mean filling factor for which further increase in sphere-size won’t change
anything anymore because all spheres are already in one cluster. So it marks the upper end of the
”percolation intervall” that is interesting to look at.
The simulation data in each dimension for a rising number of spheres N could not be analyzed in the
same way as the finite-size-scaling for the critical threshold ηc(dim) described in chapters 5.3.1-5.3.4 or
the 10%-clustering-point of chapter 5.4.1.
Why? The mean value for the saturation filling factor keeps on growing for increased system size (number-
of-spheres N) - within the range of simulated N (up to 320,000) without bounds; it does not curve to a
plateau, so it cannot be decided if it saturates to some N →∞-limit value or if it keeps on growing.
As an example, in figure 5.13 you can see the N-dependence of the saturation point in 2 dimensions.
Rather good heuristical fit-functions for the N-dependence seem to be logarithmic

ηs(N) = a + b · log10N (5.8)

with a, b depending on the dimension. These fit-parameters are given in table 5.3.
For dim ≥ 3, those fitparameters a and b can be themselves fitted by exponential fit-functions with the
same basis, so the rows (dimensions) 3-11 of table 5.3 can be expressed in one function; the saturation
filling factor is approximately

ηs(dim,N) ∼= cdim · (f + g · log10N) for dim ≥ 3 (5.9)

with c = 0.7405, f = 1.913, g = 0.692.
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Figure 5.13: The saturation filling factor ηs(N) in 2 dimensions at which all spheres are in one cluster.
Experimental data and a logarithmic finite-size-scaling fit-function (see equation (5.8)).

5.4.3 The 99%-Clustering-Point

As the saturation point could not be extrapolated to the N → ∞ limit (because it kept on growing),
another filling factor was needed that could serve as the upper border of the ”interesting filling factor-
range”:
Where 99% of the clustering has taken place can be situated by the filling factor, at which the number-
of-clusters is only 1% of the number-of-spheres.
That definition of a threshold results in data that does saturate for high N - but it obviously works only
for N > 100. A good fitting-function for the N -dependence reflects this:

η99%clustering(N) = a + b(N −N0)c (5.10)

with N0 a little above 100.
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Table 5.3: Fit-Results for the N-dependence of the Saturation filling factor in ηs(N) = a + bLog10(N)
for dimensions 1-11. Above dim ≥ 3 the fitparameters - and thus the saturation filling factor - can be
summarized in equation 5.9

dimension Fitparameter a Fitparameter b

1 0.4886 ± 0.11645 2.31157 ±0.03105
2 1.18622± 0.05181 0.46472 ±0.01382
3 0.81494± 0.02935 0.29044 ±0.00861
4 0.59509± 0.02018 0.20218 ±0.00586
5 0.42317± 0.02597 0.15092 ±0.00762
6 0.32889± 0.02813 0.10536 ±0.00825
7 0.22469± 0.01135 0.08473 ±0.00333
8 0.17796± 0.00931 0.05942 ±0.00273
9 0.12318± 0.00643 0.04843 ±0.00189
10 0.09297± 0.00602 0.03654 ±0.00177
11 0.06777± 0.00533 0.02696 ±0.00163

These fits were done for all the measured dimensions 1-11. Fitparameter a is again the N → ∞ limit
(because c is negative and thus the second term vanishes).
You can see the dimension-dependence of that N →∞-limit for all the measured dimensions in figure 5.14.
That upper border of the ”interesting filling factors” quickly falls for rising dimensions and can be fitted
by:

η99%clustering(dim) = f · gdim (5.11)

with f = 3.976 and g = 0.5337 .
The data is not as good as for the other filling factors, but the general trend seems to be fulfilled.
Moreover, the basis of this exponential fit function for the 99%-clustering point is almost identical with
the 10%-clustering point (see equation (5.7)).
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Figure 5.14: The 99%-clustering point at which the number-of-clusters is 99% of the number-of-spheres N .
Experimental data after finite-size scaling, and the fit-function (5.11)
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5.4.4 The Percolation Intervall

N-dependence

The critical filling factor lies between the 10%-clustering-point and the 99% clustering point (which is
below the saturation point) - of course only in the non-degenerate situation of dim > 1 (see chapter 5.5
for that case dim = 1).
In figure 5.15 the dependence of those four filling factors on N is shown for dim = 2 and dim = 7. You can
clearly see the ever-growing saturation-point at the top of the diagrams (chapter 5.4.2). In 2 dimensions,
the critical filling factor ”ffc” is rather close to the 99%-clustering point (called ”ffnoc1”, because the
number-of-clusters is 1% of the number-of-spheres), while in high dimensions like dimension 7, it is closer
to the beginning of the percolation intervall marked by the 10%-clustering point (”ffnoc90”) - and the
saturation (where all spheres are connected) happens much later.

Dimension Dependence

With those 3 filling factors that can be extrapolated to N →∞, the percolation intervall and its dimension
dependence is shown in figure 5.16. It contains the ”interesting” filling factors where the transition from
(almost) no clustering over critical clustering to (almost) full clustering takes place.
Remarkable features:

• With rising dimensions, the critical filling factor lies closer and closer to the beginning of that
intervall and the saturation above it in the overcritical domain takes (relatively) longer and longer.

• The two borders of the intervall, the 10%- and the 99%-clustering point, exhibit the same dimension-
dependence (same slope).

• The degeneration of the one-dimensional case causes the crossing of the critical threshold and the
99%-clustering point below dim=2 (see chapter 5.5).
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Figure 5.15: The N-dependence of the four measured filling factors in 2 and 7 dimensions. ffnoc90: Where
the number-of-clusters NOC is still 90% of the number-of-spheres N (”10% clustering”); ffc: The critical
filling factor where the spanning cluster occurs; ffnoc1: Where NOC is 1% of N (the ”99%-clustering
point”); ffs: The saturation filling factor where all spheres are in one cluster
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Figure 5.16: (”THE” numerical result of this work in one diagram:) The critical threshold is
between the 10%- and the 99%-clustering-point in dimensions 1 to 11. This percolation intervall
contains the ”interesting” filling factors where the transition from (almost) no clustering over critical
clustering to (almost) full clustering takes place.
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5.5 The One-Dimensional Case

The one-dimensional case has to be treated differently because of its degeneration.
Easy to understand: The spanning cluster disappears as soon as only one single area of the 1-dimensional
line is not filled by a sphere. So the critical point and the saturation point become identical. There is no
overcritical domain.
The critical occupied volume fraction has to be φc = 1, so from φc = 1− e−ηc (equation (2.22)) we know
that the critical filling factor has to become ηc = ∞.
So the N -dependence of the critical point at which a spanning-cluster appears is totally different from
the N -dependence in higher dimensions, please have a look at figure 5.17 and compare it to the dim = 2
and dim = 7 figures 5.15.
Here, in 1 dimension, the (finite-size) critical filling factor (or spanning-transition point) is growing with-
out bounds for rising system size N . Rather good fit-functions for the measured critical and saturation
point are logarithmic

ηc/s(N) ∼= a + b · log10N for dim = 1 (5.12)

with ac = 1.16, bc = 2.16
or as = 0.49, bs = 2.31

The 10% clustering point (which marks the lower edge of the interesting region) levels at ∼ 0.105, the
99%-clustering point (where almost all spheres belong to the one cluster) levels at ∼ 4.60 for high N ,
which for the mentioned reasons is below the critical point ηc =<ffc>.
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Figure 5.17: The 1 dimensional case is degenerate. Please compare to figure 5.15. In 1 dimension, the
critical filling factor and the saturation filling factor are identical, they scale logarithmically with rising
system size (equation (5.12)).
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Chapter 6

Technicalities and Programming

As you can guess from the title, this chapter should be read with some insight into programming, as it
is kind of a user manual for the source code. The less experienced reader might want to just skip it and
move on to the last chapter.
However, if you are interested in recycling parts of my sources, I recommend especially sections 6.2.4 and
6.2.5 and the Appendix.

Introduction

Learning to program in C++ [55] was one of the main challenges of this work, now the sourcecode consists
of 10000 lines, of which 8000 are code, the rest are lots of comments and some blank lines.
At the start I tried to model everything myself, even the data containers like linked lists, because I wanted
to understand the basics of programming and to optimize them to the limit. But soon I realized, that
I should use at least the STL (Standard Template Library) with its containers to save time for more
important work (see chapter 6.3).
Now, the majority of the code is not for the algorithm described in chapter 3 anymore, but for analysis,
statistics, data-handling, batch-starters, etc. - all the ”onion-shells” around the core program.
In this chapter I will try to give some introduction to the C++ code; hopefully it will show programming
principles and will give hints for this and other projects. There are lots of comments inside the sourcecode
itself, so if you are interested to study it or to use parts of it for your programs, you will soon find it at

• www.AndreasKrueger.de/thesis/code

It is tested with GNU g++ 2.95 and MS Visual C++ 6 and doesn’t need any compile options. Just
compile clcount.cpp. Only the reserved stack size in MS Visual C++ has to be raised to 2,000,000,000
before.

6.1 The Code

6.1.1 The Files

While trying to keep order, I partitioned the code into now 24 files. There is not only a chronological,
but also a structural order, in which the program can be understood. Just have a look at the include’s in
configuration.h to already understand a gross of it:
After building the vector and the sphere, I experimented with different containers like arrays and linked
lists. Then the naive counters followed, now they have become the cellcounters. The clusters are to be
handled and analyzed (spanning cluster, histogram, etc.). For some experiments quicksort and boxing
were necessary, but the main work (and number of codelines) is done in divide and conquer - the new
algorithm.
All the experimental data is kept in a new class, I called measure, it holds “data ± error” and cares
for (simple) error propagation (most of the important mathematical routines +, -, ·, /, sin, exp, etc.
are implemented with the respective derivatives for Gaussian error propagation) - one of the definitely
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recycable parts of the program, as well as the statistics-part, in which the mean, variance, skewness
and kurtosis of any data is calculated.
Just a transport class for a large amount of data is kept in results, while datafiles does the obvious.
In counters, composite counters with all initialization, analysis and data handling are stored, and ff
contains the routines like intervall nesting, etc. that are necessary to pinpoint the critical filling factor.
For both programs, the numerical and the visualization, the same constants are used, mainly fit-functions
for ηc and the table of optimal cuts, but also the maximal dimension for the vector.
In clcount.cpp the rest is loaded for the numerical part of the program only:
In optimizealgo, the counters can be started with ranges of different cuts per direction to find the
fastest number of cuts for the divide-and-conquer; the frontend contains some user interaction and there
are speedtests. The big starter-programs and batch-routines contain the longrunners that can keep a
desktop busy for weeks.
Either the menu asks for interaction at the beginning or the most important parts of the program can
now also be started by commandline-parameters.

6.1.2 The Namespaces

Object oriented programming (OOP) was a new concept to me, so that I learned it only after a while,
when a big part of the code was already programmed. The vector itself is a pure class with all the
respective advantages, the sphere and the cluster (called cluson) are classes with public members and
measure is even a templated class. But most of the other routines were not initially designed to be part
of a class with inheritance, etc.
When looking for C++ language elements to still structure the heap of code logically, I found namespaces
- such a new concept even in C++ that compilers like the GCC 2.8.1 of 1997 (the one installed in our
physics department) can’t handle it. Everything within a namespace is taken out of the global namespace
and has to be addressed with the scope operator ::, which prevents name-collisions and structures the
program a lot.
Across all of the files, the subprograms are divided into logical namespaces now, e.g. so that there is no
subroutine makehistogram(...), it has to be called like this: analyze::makehistogram(...).
The namespaces are:

• counters

• analyze

• grid (for first experiments with boxing)

• statistics

• results

• datafiles

• ff (filling factor)

• optimize

• frontend

• starters

I hope this work of structuring will help when the program keeps on growing or will be used by other
people than me.

6.2 Data Classes

Some more details about the containers, they were at the center of the initial planning. In my opinion,
when developing a new idea and algorithm, a good starting point are the containers for the objects that
are to be handled.
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6.2.1 Aliases for the Fundamental Types

In order to keep it flexible which type of variables might be the fastest and leanest, throughout the
program I avoided to use the built-in types like float, double, int, long, etc.. Instead, I defined
the aliases REAL, COORDFLOAT, NUMBER, COUNTER and LONGBITS, which now stand for double, float,
long, int and unsigned long.
So e.g. the d-dim vector class of the next chapter consists of d COORDFLOATs and not directly of d floats,
but for the simplicity of the explanations, in the following I will name the types canonically.

6.2.2 The vector

Vectors in d dimensions hold (at least) d coordinates, numbers of the field that is underlying the vector
space, in this case the field is of type float.
To store a set of numbers in normal memory efficiently and with fast access to the elements, the [ ]-
array of C++ is the best solution, with the one disadvantage: the size has to be known beforehand (at
compile-time):

const MAXDIM=11;

class myVector {
float x[MAXDIM];
int dim;

}

Now, after initializing a variable of type myVector, a subset of the array can be used to store the dim
coordinates, the remaining dim-MAXDIM variables are just not used.
If this is to be avoided, and the dimensionality is still only known at runtime, another possibility has to
be chosen: The vector itself then only consists of a pointer to a float(array), and when initialized, the
array is created on the heap:

class myVector2 {
float *x;

}
myVector2::myVector2(int dim) {

x=new float[dim];
}

This results in a truely variable-dimensional structure that can even change its size at runtime, so no
memory is wasted like in the first version. Unfortunately, this vector performs much worse, because of
pointer access to heap data; when dim==MAXDIM, the first formulation is even two times faster!
I decided to waste memory and save time.
All the vector manipulation routines like −, <<, null-vector and random-vector are members of or friends
to this class, so that they can access the (private) array of coordinates.

The Perfect Coordinate: float or double?

Many simulations are done on the lattice, not only for topological advantages, but also because integer-
calculations are said to be faster.
At first in experiments with the cellcounter, I tried all variations for the coordinates, and floats performed
best in this test, even better than longs, probably because they are smaller (4 bytes).
The clusterfinder with float-coordinates only needed 88% of the time using double or long - coordinates.
I didn’t choose int because that would result in a too coarse lattice. Now every calculation is done in
double because of the higher precision - but the coordinates are stored in float - to save memory and
time. Nevertheless, it would not be difficult to redo all the simulations in double coordinates by just
changing COORDFLOAT to double (see chapter 6.2.1).
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6.2.3 The sphere

A sphere-container must hold at least the center vector and the radius. For all the algorithms it is useful
to store the clusternumber with the sphere - and for visualization, the clustersize might also reside here,
then the colouring is easier to do.

class sphere {
myVector center;
double radius;
long clusternumber;
long clustersize;

}

The sphere-class contains routines for distance-measurement and overlap-checking. The calculation of the
unitsphere-volume is in the same file.

6.2.4 A Container for Error-Bar Numbers: measure<T>

When I had the first real-data measurements and tried to calculate results with them, I noticed the
always needed error propagation. The class measure closes that often occuring gap by providing the user
with all important mathematical functions - and the class cares for the necessary error propagation. It is
template’d so that it can be used for all wanted types.

template <class T> class measure {
T average;
T error;

}

The operators +,−, ∗, / and functions like exp, sin, fabs, . . . are implemented.
An easy example is the multiplication of two measurements with independent error-bars:

c±∆c = (a±∆a) · (b±∆b) (6.1)

= (a · b)±
√

(b∆a)2 + (a∆b)2 (6.2)

So with example values

â = a±∆a = 2± 0.1 (6.3)

b̂ = b±∆b = 7± 0.5 (6.4)

the result is

ĉ = â · b̂ (6.5)
= c±∆c (6.6)
= 14± 1.22066 (6.7)

Now with my new class measure, a calculation like this can be very easy, because it provides a new type
for variables:

typedef measure<double> measure; // create a double-valued type (once!)
measure a = measure(2, 0.1);
measure b = measure(7, 0.5);
measure c = a*b;
cout << c <<endl;

// on the screen, it results in 14±1.22066

So once the variables are defined, the usual operator-symbols and mathematical routines can be used in
the canonical way. The library is tested extensively in Windows and Unix - and my statistics package
uses it just as a storage container for measurements.
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N.B.:

The Gaussian error propagation has one drawback: The error increases for each operation. And as the
implementation is not done in symbolic mathematics, but as numerical calculations, it can’t find the
“shortest” formula by itself. Let’s look at an instructive example. The calculation

d̂ =
â · b̂
b̂

(6.8)

should result in

d̂ = â (6.9)
= a±∆a = 2± 0.1 (6.10)

but the C++ program

measure d = a*b/b;
cout << d <<endl;

still results in 2±0.225425, because the error propagates once for * and a second time for /.
So if you are doing long calculations with error-bar numbers, use measure with care and deliberation -
the error might be too high.

6.2.5 Statistics

Experimental data of computer simulations is often interpreted only after the simulation runs, using
other programs like gnuplot, Origin or SPSS. The advantage of runtime-statistics, however, is that a) the
data can be directly plotted without further analysis, and b) the program itself can react to statistical
results. So e.g. it can do more simulation runs until a wanted accuracy is reached.
I have coded an abstract library that calculates from any (number) data the four central moments of
distributions: the mean, variance, skewness and kurtosis. It takes a (STL)-list of arbitrary length and
returns the four moments and their standard-deviations (four measure-objects).
It is template’d, so that the ingoing data and the outcoming results can be of different types. The
collection of the four moments is a class called muvarskewkurt<result-type>; the averaging-routine is
called calculate moments<result-type, listelement-type>.
Before the elements of the list L are summed to get the central moments, a preprocess-function can
manipulate each element, so e.g. square it or shift it by a constant value, which prevents the necessity
to create a second list of numbers, if one is interested in other aspects of the data. If this is not wanted
(the standard case), the data is manipulated by the function linear, which does nothing (still, the shift
value manip argument and the return-type-dummy have to be given (see below) as dummy-values)
The following code should be self-explanatory, it creates 500,000 random numbers between 0 and 1 and
calculates and prints the four moments; once for the distribution of the uniformly distributed numbers
and a second time for the squares of these numbers:

#include <iostream> // for cout

#include <list> // a linked-list from the STL holds the data

using namespace std;

#include "statistics.h"

using namespace statistics;

void main(){

cout <<"Test statistics with a list of 500,000 random numbers.";

list <float> L;

for (int i=0; i<500000; i++) L.push_back( rand()/(float)RAND_MAX);

int manip_argument=42; // dummy (unused due to parameterless data manipulation linear, square)

double dummy=0.0; // dummy to set the result-type to double

muvarskewkurt<double> A, B;

A = calculate_moments<double,float>(&manipdata<float>::linear, manip_argument, L, dummy);

B = calculate_moments<double,float>(&manipdata<float>::square, manip_argument, L, dummy);

cout <<"The distribution has these statistical properties:\n";

cout <<"average mu, variance, skewness, kurtosis = \n";

cout <<" linear:\n "<< A <<"\n square:\n "<< B <<endl;

}
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After a few seconds, it prints:
Test statistics with a list of 500,000 random numbers.

The distribution has these statistical properties:

(average mu, variance, skewness, kurtosis) =

linear:

mu=0.500276±0.288418 var=0.0831846±0.0745583 skw=-0.00185585±1.96797 krt=1.80335±2.40927
square:

mu=0.333461±0.297904 var=0.0887464±0.0950127 skw=0.639098±2.49657 krt=2.1462±4.46682
While the uniform random numbers are distributed around 1/2 symmetrically (skewness ≈ 0) with a low
kurtosis, the squares of these numbers have a mean of 1/3 and are skewed to the left with a higher, a
little more Gaussian (would be 3) kurtosis.

6.3 Containers for Many Objects: Array Contra Linked-List -
and the STL

What is the optimal structure for data? This question arouse after the single elements like sphere were
ready to use.
Often the algorithms themselves decide about this question, because it might (not) be necessary to
randomly access each element, or there might be collections of varying size.

6.3.1 Some Important Containers

Arrays are fast and not flexible

The standard-C array “[ ]” is a good solution for any given-size data collection, it allocates a successive
chunk of memory and is very fast to access, because each element gets an definite address (O(1)-access).
On the other hand, it is impossible to increase the array size or insert elements at random positions.

Linked-List

A linked list is a linear structure of connected “nodes” that hold data. A single node contains data and
at least one pointer to its successor (in a double-linked list, each node also knows its predecessor), so that
it can be iterated from the start to the end, reading out the data of all nodes.
The big advantages of lists are the variable length and the ability to insert data-nodes after any given
point (by changing only one pointer in the node before and pointing from the new element to the old
successor), the disadvantage is the lack of address of the nodes - a single data-node can be found only by
iterating the whole list until that node is reached.
I programmed a linked-list following the excellent book of Sedgewick [50], it worked well and it was fast.
But it didn’t have an iterator-friend-function, so only one iteration at a time could be done per list.
When I learned about the STL (see chapter 6.3.2), I gave it up to program my own standard containers,
but it actually was a very instructive exercise to have done it.

Hash-Table

A hybrid structure of the above is a hash or map. A node of a map contains a key, the data and (at
least) one pointer. The key can be of any type and directly adresses the data in the right node - and the
pointer-structure makes it possible to iterate the whole structure linearly from any given key (node) on,
because the elements are inserted using an order-function for the keys, so they are sorted.
As an example, if we want to store the population of countries, the key should be a string to hold
the country name, the data would be of type long, and the sorting order would be lexical (using the
STL-order function less):

#include <map>
using namespace std;
typedef map<string,long, less<string> > string2long;
string2long population;
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population.insert(string2long::value_type("Germany", 80000000));
population.insert(string2long::value_type("China", 1300000000));
cout << "The population of Germany is ";
cout << population["Germany"] << endl;
\\ The result is
\\ The population of Germany is 80000000

6.3.2 STL - the Standard Template Library

The Standard Template Library STL provides C++-programmers with the standard containers to store
data and algorithms to iterate and manipulate that data. In contrast to my first intention to create own
structures to be able to fully control them, I now see the advantages of the STL and recommend it highly.
The containers have standard-interfaces and -behaviour, the library is tested and optimized and it is
ported to almost any platform.
If your program is designated to run on any platform, you can even compile your own STL by using the
OpenSource product “STLport” [48]. Then the same STL will be used everywhere.

6.4 The Core-Algorithm

Some remarks about the implementation of the cellcount. It was important to optimize it thoroughly,
because it is the “inner loop” of the whole program.
All the described improvements concerning the overlap -checking function speeded it up by a factor
greater 3 (!) in the extreme case of 20 dimensions.
Most of the tricks presented here might be of general interest for your programming style of time-critical
parts in your program.

6.4.1 Passing by Reference

If a subroutine needs data to process it, the data can be passed directly, then automatically, a copy of
the data is made for each call of the subroutine.
Especially for large structures (e.g. a 10-dim sphere is 64 bytes), this takes a lot of time, so C++ provides
a better option to pass data: “passing by reference”, using the &-operator in the function-head parameter
list. Through the reference, the data will be accessed on its original memory position without the need
of copying it (similiar to an access by pointer, but not in pointer-syntax).
For example, the overlap-checking function needs sphere 1 and sphere 2 to check if their center-vectors
are closer than the sum of radii. If the spheres are passed by reference:
bool overlap(sphere& sph1, sphere& sph2){...}, it only takes 85% of the time that a copy-of-sphere
passing needs.

6.4.2 Avoid Implicit Temporary Variables

When analyzing execution times, I measured that the overlap-checking overlap(sph1,sph2) takes about
60% of the total running time! More detailed, the vector operator- that creates the distance vector
between the two centers, takes 40% of that. How could that be optimized?
An operator- is binary: a-b, it needs a temporary (internal) variable to store the result until it is put
into some target variable or used elsewhere. This temporary variable is created and destroyed for every
single subtraction, which takes up a lot of time.
I improved the process by passing a third variable temp which is created once and used over and over
again: Now overlap(sph1, sph2, temp) can use the much faster operator-= which is unary.
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6.4.3 Square’ing Instead of Square-Root

To check two spheres for overlap, the distance is compared to the radii (equation (1.9)):
√∑

(xi − yi)2 = ‖ x− y ‖< R1 + R2 (6.11)

⇒
∑

(xi − yi)2 = ‖ x− y ‖2< (R1 + R2)2 (6.12)

As (6.12) eliminates the square-root in favour of a (cheaper) multiplication, the second version takes only
90% as long as the first version (for 10000 spheres, at critical radius in 2dim).

6.4.4 Don’t Check Visited Spheres

One of the most important improvements is algorithmically, not by changing some technical implemen-
tation details.
Please look at the lines 4 and 5 of the subroutine SUB neighbour in chapter 3.1.1.
There are two possible orders for the 2 condititions “overlap” AND “yet uncounted”:

1. if (overlap(sph1,sph2) && sph2.clno==0) THEN recursion

2. if (sph2.clno==0 && overlap(sph1,sph2)) THEN recursion

Version 2 takes much less time because the already clustered spheres are not checked for overlap again.
For [8dim, 1000 spheres], in the undercritical and critical situation, this already saves about 50% of the
time, but far in the overcritical domain, even only 6% of the running time of the other version is needed!

6.4.5 How to Store and Count Subsets of Spheres

During the divide-and-conquer recursion, the total set of spheres is divided into smaller and smaller sets.
Those sub-sets have a differing number of spheres, so the spherenumbers of one cell have to be stored in
a variable-sized object: a linked-list.
Thus, to do the naive cellcount in one cell, at first it seemed advantageous to iterate through all those
spherenumbers using these lists, but unfortunately this takes about 200-300% of the time compared to
an arraycount with spheres stored in a definite-sized array!
The solution I chose was to copy the spheres of one cell into a temporary (big enough) array. The copying
takes some (very short) time - but then the array can be used to find the clusters of that cell with a
normal arraycount. And of course, the temporary array is recycled, it is created once and destroyed only
after all cells have been clustered.

6.4.6 Structure of One Throw

Obviously it is neither necessary nor possible to describe such a big program in detail, but for all starter-
programs, it might be useful to understand what it does in one realization. A short schematic overview:

1. throw N spheres

2. find clusters recursively

(a) reset variables (clusternumbers, clustertable, . . . )

(b) i. divide into cells (recursively) (DIVIDE-AND-CONQUER)
ii. find clusters in one cell (CELLCOUNT)
iii. combine cells (COMBINE)

(c) results: clustertable, execution time

3. spanning?

4. clustertable → histogram of clustersizes

5. delete clustertable
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6. histogram analysis

• number of clusters NOC

• size of biggest cluster B

• mean size of finite clusters M

7. delete histogram

The (saved) results are the spanning directions, NOC, B, M and the execution time.

6.5 The Starter-Programs

Like every other big program, my program can be understood as a succession of concentric “onion shells”,
the overlap-checking of two spheres in the “onion-core”, the cellcounter in a “onion-shell” around it; then
further outside, the divide-and-conquer and so on.
The outer shell of that “onion” are the starter-programs, which interact with the user to take in the
chosen parameters and execute all necessary steps for the simulation. Depending on the parameters, a
single run of a starter-routine might take weeks to finish its task.
There are several types of starter-programs using all (or some of) the inner routines:

1. Throw one realization and solve the problem with different algorithms: analysis of time complexity.

2. Find the optimal number of cuts for the divide-and-conquer.

3. Find ηcrit by intervall-nesting - and repetition over many of those realizations;
repeating it until ∆ηcrit is smaller than a wanted accuracy
(this was used for the results of chapter 5)

4. Scan a filling factor range with a given stepsize (e.g. 90 steps in η ∈ [0.8− 1.7] in 2 dimensions) to
see the behaviour of the spanning probability Pspanning, the number-of-clusters NOC, the size of
the biggest cluster B, etc.
For a succession of rising filling factors, the simulation is started again and again, statistical mean
values are calculated, etc.
This starter-program can be used to produce data like figures 3.2 and 7.1, the percolation functions.

5. Within a range of dimensions d and number-of-spheres N , scan filling factor-ranges (like in 4.)

Some of those starter-programs are now accessible through commandline parameters, so that without
any user interaction, the program can be started for batch processing in a queue like condor [62].

6.5.1 How to Smooth the Curves

One of the advantages of runtime-statistics is that the algorithm can itself “observe” its results. Around
the critical threshold, the fluctuations increase, so the 4. starter algorithm described above can do more
runs in that region proportional to the variance of the result. The resulting curves are much smoother
and this method saves time because it smoothes the curves only where that is necessary.

6.5.2 File Formats

Data can be analyzed in various ways. The targeted result at the moment, to find statistical estimators
for the critical thresholds, is “hardcoded” in the program - and on the way up to that abstract numbers,
a lot of simulation data is summarized and then discarded afterwards.
As I could not foresee which other aspects of the data might be also interesting later, I implemented
data-save routines on several levels of the program. Up to now, about 300 MB of ASCII-coded data have
been saved to files.
For example, during the “find-critical-filling factor” routine, three different filetypes are saved which
represent three levels of statistical averages. A line in such a file consists either of:
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1. The 5 observables measured in a single point set realization at one filling factor (sphere radius):
(not)spanning, NOC, B, M, execution time
(The results of chapter 6.4.6 during the intervall nesting)

2. The spanning filling factor of one point set realization with the accumulated mean, variance, skew-
ness and kurtosis of the distribution of all previous critical filling factors in that configuration (see
the plots in figures 5.5 and 5.6)

3. The best, averaged results for each (N, dim):
mean, variance, skewness and kurtosis; total running time
(=last line of 2.)

While there are hundreds of megabytes of the first datatype, only about 100 kilobytes of the last datatype
exist. The plan is to create a database with all the tables and analyze it “diagonally” for other aspects
than the one described above.

6.6 Compilers

The ANSI standard of C++ is platform-independent, nevertheless I had to learn that there are still
different “dialects” among the compilers. It was a hard task to port the fully functioning program from
MS Visual C++ on Windows to GNU g++ on Unix, because of slight differences in formulation. The
about 150 “errors” after porting could be eliminated almost completely, so that now my written syntax
of C++ has become platform-independent.
One inconsistency (introduction of templated friend functions in the head of a class) remained and had
to be solved by a preprocessing directive for the compiler, so that here now two different code snippets
exist for GNU and Microsoft C++ (see the class head of measure.h).

6.6.1 Microsoft Visual C++

The programming environment of MS Visual C++ is very comfortable, the detailed online help explains
every C++ command and gives a lot of code examples for the STL. This remarkable comfort allows it
to learn the language interactively; even by try-and-error, as the compiler results directly point back to
the responsible code lines.
There are “browse-informations” generated that allow it to jump around in the C++ code by point-and-
click (not only a class browser is provided, but any definition can be found automatically, etc.).
The “Win32 Debug” compiler settings generate executable code, that can be graphically debugged to
find errors by visiting the variables during runtime - but in “Win32 Release”-settings, the execution time
is then only ∼47%.
The execution time can be further sped up by the manual settings “no MFC” (95%) and “incremental
binding”: (96%).

6.6.2 GNU g++

One disadvantage of the MS Visual C++ is the “sloppy” C++ syntax; it accepts a lot of formulations,
that other compilers don’t accept, so one tends to write ”Microsoft-C++” that is then more difficult to
port to other platforms.
Therefore, for portable programming projects, I suggest to use 2 compilers at a time during coding to
find the idiosyncrasies early enough: The OpenSource “cygwin” unix-shell for Windows [63] makes it
possible to run GNU GCC in Windows, so that it is very easy to compile the same C++-code-files with
MS Visual C++ and GNU g++.
GNU gcc [18] is closer to the ANSI C++ standard, it is for free and OpenSource, moreover, it is ported
to many platforms, so try to program GNU GCC c++ style!
To compile my program with gcc, no commandline-switches are necessary, the optimizer -O2 is suggested:

• g++ clcount.cpp -O2 -ocontinuum percolation.out
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You need a rather new compiler version, version 2.8.1 doesn’t compile it because of various developments
in recent C++ (like namespaces), v2.95.2 works perfectly!

Unfortunately, on the computer-cluster of our university, version 2.8.1 (of 1997!) was installed; I asked
often and I waited more than 3 months until gcc was upgraded to the new version 2.95.2.
Obviously, the computer admin of the physics department desperately needs a full-time assistant!
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Chapter 7

Outlook

7.1 The Achievements

The percolation thresholds were measured numerically in the first 11 integer dimensions of euclidean
spaces filled randomly with equally sized spheres.
Three other filling factors were located in the same way to establish knowledge about the percolation
interval: the 10%-clustering point, the 99%-clustering point and the saturation point.
May these numerical results simplify future examination of continuum percolation.

7.2 The Consequent Pathway

7.2.1 The Next Research Goals

Critical Exponents

The next, most important step is to measure the critical exponents of these singularities at the critical
point. Please revisit chapters 2.5 for the importance of the critical exponents; the experimental results
for our continuum percolation model should be proving to be the same as those for lattice percolation
shown in figure 2.7
Moreover, especially the ”transition” of the critical exponents from the finite dimensional (and dimensional-
dependent) values to the infinite dimensional values at dimension 6 could be interesting to examine.

A Percolation Formula

To learn more about critical systems and to model real-life-data phase transitions into percolation models,
it might be also useful to study the observables in the whole range of filling-factors, also in off-critical
situations. There is still no “percolation-formula” for the observables, like e.g.;

• P∞ =function(R, N, dim), the percolation probability

• NOC=function(R,N, dim), the number of clusters

• χ(p) =function(R,N, dim), the mean size of the finite clusters

• B =function(R, N, dim), the size of the biggest cluster

• . . .

Looking at figure 7.1, you can see that all the tried sigmoidal functions (Sigmoidal Richards, Gompertz,
Weibull, Hill, Boltzman, Logistic) don’t fit the experimental data for the size of the biggest cluster.
Especially in the overcritical domain, the real percolation data saturates much more smoothly than any
of the sigmoidal functions. How could a ”percolation function” look like that reflects this behaviour
better?
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Figure 7.1: These sigmoidal functions don’t fit the percolation data.

Predicting a Percolation Transition

Connected with this question is the task to find indicators for for an upcoming onset of percolation, a
criterion below pc that tells us how far the system still is from its percolation transition (the momentary
candidate being the number of clusters - see figure 1.3 ).

The Connection of Lattice and Continuum Percolation

It would be very useful to have a transformation prescription how to transform lattice percolation results
(e.g. pc) into continuum percolation results (e.g. ηc); the former can have only one object on each lattice
vertex which has a definite maximal number of neighbours (2d in d dimensions), while the latter is using
soft spheres which can multiply overlap with a variable number of neighbours. In recent works, Galam
and Mauger [19] have introduced an universal formula for percolation thresholds on many lattices, it
could be interesting to subsume the continuum percolation thresholds into that formula.

The Critical Number of Neighbours

To see where exactly the Poisson distribution is a good approximation (chapter 2.3.2), the mean number
of neighbours should be measured directly in the simulation - not only but especially at the critical point.
The parameter ”mean number-of-neighbours” might be a more straightforward, instructive and useful
observable than the rather abstract density ”filling factor” if one wants to apply d-dimensional percolation
to real-life problems.

The Dimension of the Critical Cluster and the Correlation Length

Two other observables have not been modelled into the program yet: The fractal dimension of the
spanning cluster at criticality and the linear size of the biggest cluster, which gives the correlation length
of the process. Those two complete the set of critical exponents for hyperscaling by D and ν.
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Non-Integer Dimensions

It could be interesting to study percolation in non-integer dimensions, to do simulations of percolation
on fractal structures. For example, because of the divergence at dim = 1 and the condition: dimension
d ∈ Z+, it is difficult to decide between several possible fit-functions for the percolation threshold in d
dimensions (see chapter 5.3.5).
A candidate for a structure with ”tunable dimensionality” is a branching process (Caley) tree, but with
differing branch lengths (If all branches have the same length, a binary tree has dimension ∞, but if the
branch-length doubles in each generation, the dimension is 2. In between those extremes, one should be
able to generate all possible dimensions).

7.2.2 The Computer Program

Apart from the ideas in chapter 4.4.1 how to redesign the visualization, the simulation core itself should
be improved for clarity and better performance:

• The code “grew” to its actual form - it should be tidied up to a more logical structure.

• The combine routine could use d − 1 dimensional divide-and-conquer of the adjacent surfaces to
merge two d dimensional cells

• Boxing rather than multiple splitting for the divide-and-conquer to avoid multiple coordinate check-
ing

• Adaptation of the Hoshen-Kopelman approach (chapter 3.4.3) to a) continuum percolation in b)
variable dimensions to create a linear algorithm

• Experiments with different algorithmic approaches, e.g. iterating a distance-sorted connectivity list
gotten by full triangulation

• Store all the data in one database instead of hundreds of datafiles

Others shall profit from the coding work, so one goal is to publish an OpenSource-library for Continuum
Percolation.

7.2.3 Related Models

Distributions of Differently Sized Spheres, Spheres of Influence

Although most routines in the program are already working with individually sized spheres, all my
simulations up to now have always used N spheres of the same size.
But which distributions of sphere-sizes are interesting? What is the ”natural” extension of equally-sized
spheres?
There is e.g. a model called ”Spheres of Influence”, in which the radii are a consequence of the actual point
distribution. (Please have a look a figure 7.2; the nearest neighbours were found by using the Delaunay-
Triangulation [51] of a point set.). Each sphere gets a radius that equals the distance to the nearest
neighbour. Some initial simulations show, that this system might be always overcritical, the averaged
filling factor in 2 dimensions seems to be exactly 1.0.

Density Distributions

Especially for applications, like modelling QCD quark-color-tubes (strings) in particle collisions [45, 9], it
might be interesting to vary the density of points locally, e.g. there are more particles in the center than
at the outside of the collision area.

Other Shapes

Spheres are the natural simplification of geometrical objects in physics.
But varying the shape of the objects - how does it affect percolation results? The first generalization are
ellipsoids with a tunable aspect-ratio between the d different radii, once the overlap-function for ellipsoids
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Figure 7.2: ”Spheres of Influence” (N = 111). The radii are the distances to the nearest neighbour (blue
lines). (When boundary-effects are masked) the mean filling factor after many runs seems to be just 1.0
and the system is very often just (percolating) over-critical.

[38] is defined, the C++ program can generate the results straight-forward; but quite as well, one might
be interested in percolation of rods, squares, random-shape objects, etc.
The clusters themselves are shaped objects - what approach is the natural one to model this insight into
a “percolation of clusters”-structure (instead of percolation-of-spheres) to use renormalization?

Objects with Properties

The spheres could vary among each other in size (see above) to model different interaction ranges, but
also qualitatively by adding discriminating properties.
At the moment, the only property of a sphere that influences the connectivity is its radius. The model
could be enhanced by sphere properties like spin or color, which would break up connections between
overlapping but differently coloured spheres.

Characterization of Point Processes; Minkowski-Functionals and QuermaßVectors as Shape-
Finders

A possible measure for quantifying point processes are the d + 1 skalar Minkowski-Functionals and the
vector-valued Quermaß-vectors, used mainly in galaxy-distribution analysis [31, 4]; they decorate the point
set in question with spheres, and then give a value for the cumulated volume, surface, mean curvature,
etc.. They are suitable to compress the complex morphology of huge point sets to just d + 1 numbers (or
vectors). Among these ”shape-finders”, the Euler characteristics is the last; interestingly, it has a zero
shortly below the critical percolation threshold [7]!
I would like to implement these Minkowski-functionals to study them further in percolation and related
processes, especially in non-uniform (non-Poisson) distributions.
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Particle Interaction

Apart from the excluding condition of hard sphere models or lattice percolation (only one object per
vertex is allowed), the objects in percolation do not interact at all, which is an over-simplification for
most physical situations.
If one introduces local attractive interaction, a stronger clustering occurs, research is done e.g. in the field
called “grain growth” [44, 27].

7.3 Network Analysis

For more than 100 years now, we are communicating over electronical networks, the Internet is the biggest
(fully-connected!) artificial structure on this planet, and also our social relations seem to be modelled
more adequately in a network-like manner than on a lattice or in euclidean spaces, because of the wide
variation of the number of neighbours of one “node”.
The language of percolation can be useful to study phenomena in simple networks. Many questions are
interesting - like the pathlength for messages depending on the intensity of connectivity or the morphology
(Poisson distribution contra scale-free networks [2, 35]). The pathlength-research corresponds to the so-
called small world (SW) patterns in collaboration and citation networks [3, 35, 61] or in food webs
[33].
When does a network break into 2 islands? This question might yield some insight into the stability of
networks during normal use or under attacks [12].
What kinds of contact processes are used by computer-virusses that infect parts of our computer networks
[37]- or by semantic “meme”s [13, 14] that travel through our society using the contagious process of
forcing their victims to talk about the meme? What property makes them so successful that they can
reach the overcritical domain so that the infinite cluster appears and the macroscopical phase transition
”popularity” happens?
And why not create a “percolation meme” in form of a distributed-computing client that is dedicated to
percolation simulations of meme networks; it ”lives” on the Internet because its hosts have downloaded
our software to share their CPU computing power.

7.4 Your Influence

Many thanks for reading this. Please tell me your opinion.
Which parts would you recommend to extract for publications?
For me, it now depends strongly on your resonance about this work, and on funding, in which direction
I will intensify these studies.
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Strobl, Dietrich Stauffer, Nèstor Armesto, Jonathan Bowen, Frank Brand, Ulf Ehlers, Michael Doering,
Tyll Krueger, Oliver Preuss, Christian Pfeiffer, Christian Greiffenhagen - and many more.
In deep gratitude I would like to thank especially Iris an der Heiden, for all the patience with me and the
endless talks about percolation, and most of all, to Egon & Ilse Krüger, who sponsored my long studies
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Appendix A

Appendix

A.1 Pseudocode

Pseudocode is used to explain parts of the algorithm in an abstract way, so that it should be possible to
implement into any existing computer language.
The following part of the program can be called with different parameters, executes and returns a result:

SUB subname (parameter)
do something
create a result
subname=result
END subname

Call the subroutine N-times with i from 1 to N:

FOR i=1 TO N
CALL subroutine(i)
NEXT i

Conditioned execution of commands:

IF condition THEN
CALL subroutine1
CALL subroutine2
ELSE
CALL subroutine3
ENDIF

conditions (they return TRUE or FALSE):
a == b a equals b
a <= b a equals or lower than b
overlap(a,b) spheres a and b overlap or not
etc.
operators:
a++ increase a by 1
a-- decrease a by 1

access to properties of objects:
sph1.R radius R of sphere sph1

A.2 The Mathematica Programms

The main feature of Mathematica c© notebooks is the executability. The reader can study a longer thought
or experiment live by evaluating the whole paper cell by cell. For this reason, the following notebooks are
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published on the Internet so that you can download and execute them directly (provided that you have
Mathematica c© v4.0 or higher). This is an instructive way to understand the facts stated throughout this
paper and seems to me a more reasonable use than lengthening this document by another 50 pages on
paper.
The main page for all the running computer programs is

www.AndreasKrueger.de/thesis/exe/

A.2.1 Lattice Percolation

At first mainly programmed for the images in the first part of this thesis, this notebook now contains
a complete lattice clustercounter for 2 dimensions using the linear Hoshen-Kopelman strategy [24]. It
clusters about 10000 vertices per second. A lattice can be filled with probability p for each vertex or for
the whole lattice. The clusters are analyzed by the most important percolation observables - and can be
output into graphics. A whole range of p can be scanned and in a long simulation (about one day) for
several rising system sizes. Then a finite-size scaling is applied to find the ∞-limits.
Please download this notebook from

www.AndreasKrueger.de/thesis/exe/lattice-percolation.nb

A.2.2 Continuum Percolation

The filling factor and πd is defined, a naive and a Hoshen-Kopelman clusterfinder is implemented, the
time complexity of the algorithm is studied (This HK algorithm clusters about 1000 spheres per second).
Then cluster analysis routines are applied, histograms of clustersizes shown, the optimal dividing for the
boxing is found, and visualizations of the configurations can be plotted. At the moment, this is only
implemented in 2 dimensions.
A second notebook contains the model for the titlepage with varying η and N in one configuration. It was
produced mainly for visualization, but includes the necessary algorithms for summing up the clustermass
as the total sum of areas (not as the total number of spheres) and for assigning colours by a partial sum
of cluster masses in increasing mass order (it is the first fully functional - though slow - implementation
of the idea ”colour lens” mentioned in chapter 4.4.1).
Please download these notebooks from

www.AndreasKrueger.de/thesis/exe/continuum-percolation.nb
www.AndreasKrueger.de/thesis/exe/titlepage.nb

A.2.3 The Poisson Distribution - Number of Neighbours

The basic properties of the Poisson distribution are studied, then it is related to the number of neighbours
per sphere in continuum percolation. This number of neighbours is compared to the number of neighbours
in lattice percolation.
Please download this notebook from

www.AndreasKrueger.de/thesis/exe/poisson-distribution.nb

A.2.4 Hypercubes and Their Properties

In this notebook, d-dimensional Hypercubes can be drawn, a recursive formula for the number of sub-
objects is given and simplified first to an iterative formula, then to equation (2.12). Then the table of
subobjects is analyzed.
Please download this notebook from

www.AndreasKrueger.de/thesis/exe/hypercubes.nb
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A.3 The C++ Sourcecode of the Simulation Program

Now that you have finished reading this paper, another 135 pages are awaiting you - the sourcecode
of the C++ simulation engine and the visualization program is approximately 9000 lines long. You can
download it at

www.AndreasKrueger.de/thesis/code

Besides a version history, there are several variations; a plain-text file, a C++ syntax color-coded PDF
file and an archive of all the separate include-files to compile the program on your computer.
I would really like to provide a fully linked sourcecode browsing like in Java, and I appreciate any hints
leading to such a solution - is there anything available like ”c++2html” ?
To study the sourcecode, at the moment I recommend the color-coded version, the C++ syntax is much
easier to read (I am searching for a cpp2html - browser tool, please give me a shout if you know a good
one). Please consult chapter 6 for explanations about the design structure of the program.
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Title page: A visualization of the two-dimensional case

There are 28665 discs of a total fillingfactor (sum of areas) 0.894362

with a fillingfactor between 25% and 145% of the

critical fillingfactor 1.128 in y-direction

with the number of discs by a factor of 77

(while equally compensating the fillingfactor

by decreasing radius)

The spanning cluster contains 10251 discs,

its total sum of areas is 0.486329

�

�

�

�

growing in 9 steps

growing in 9 steps

in x-direction

� The used “colour lens” assigns the colours from green (small cluster

mass) to red (big cluster mass) in proportion to the partial sum in the

histogram of cluster masses

Hiermit erkläre ich, die Arbeit eigenständig erstellt

und alle verwendeten Quellen angegeben zu haben.




