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Structure of this quick’n dirty short talk

Graphs In statistical mechanics models

definitions of 3 graph measures that were
our first important observables

The ,old* graph model of Erdos-Renyi

1998 paradigm shift with random networks

- new empirical findings

- new random graph models

- new community of physicists entering networks
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Special cases of graphs: Trees, Lattices
are regular graphs (and around for a lon tlme')

OO

Lattice Z2 - some processes:

* Ising (model magnet with spins)

Caley-Tree with coordination |
number (degree) z=3 * gauge field theory

(elementary particle theory simulations)

.. branching process ...
 Self organized criticality (SOC)
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Percolation — geometric critical transition
here: ,continuum percolation“ (no lattice, but free coordinates)

www . AndreasKrueger .de/thesis
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graph measures 1.:
diameter, paths 6

4
O 2

e pathlength (geodesic path)
— Shortest connection between 2 nodes
— Example pathlength(1,8) = 4

e global graph-properties

— Diameter = longest geodesic path (here 4)
— characteristic pathlength = Average of all paths (i,))
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graph measures 2.
Cluster-Coefficient, Triangle Number

3 3 3
1 1
2 4 2 4 2 4
C1:1 C1:2/3 C1:1/3 Clzo
#Ti #T. = Number of Triangles around

Ci = k (k. —=1)/2 vertgxi |
C;: Estimator for local density of
ZC connections, “how many of my

friends are friends to each other?”
(global) N
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graph measure 3: degree of a node

K, = deg(x) = |[N,(x)] = how many N,-Neighbours has x
P(k) = Degree-Distribution= number of nodes with deg=k

5

Degree Distribution

IS
I

w

Frequency P(k)
N

2 Degree k 3
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Hubs and Authorities

1
« Hub ~ high degree
— e.g. plane traffic: Chicago, Frankfurt Main
— E.g. mathematics: Erdos

e Authority ~ linked by a Hub
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THE random graph model:
Erdos Renyl RandomGraph (~1960)

*G(N,p) random graph
N(N-1)

2

*N vertices = # possible edges: M, o =

*Independent Probability p for each 0 e[0,1]
edge (Bernoulli-process)

ST

p=0.05 p=0.1 p=0.15 p=0.25 p=0.3 p=0.35
B:D BE=2 B=4 BE=T B:Q B=11 BE=14 B=1&
moC=10 MmoC=8 MoC=6 moc=3 moc=1 moc=1 MoC=2 moc=1
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Degree Distribution with ER G(N,p) Is ~ Poisson

(kK)=(N-1)p

Ny M 2M

N(N-1)/2 N

=H
Average iIs good estimator for
the whole distribution (bell shaped)

The degree has a binomial
distribution. For N>>1 it
becomes Poissonian:

k
_a M
P(k)=e "
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F1G. 7. The degree distribution that results from the numerical
simulation of a random graph. We generated a single random
oraph with N=10000 nodes and connection probability p
={.0015. and calculated the number of nodes with degree
k.X; . The plot compares X, /N with the expectation value of
the Poisson distribution (13). E(X )/ N=Pl(k,=k). and we
can sce that the deviation is small.
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paradigm shift 1998/99
static random - grown networks

Startlng Papers

Watts, D. J. and Strogatz S. H.,
Collective dynamics of small- world networks,
1998.06.04 Nature, 393, 440.

« Barabasi, A.-L. and Albert, R.,
Emergence of scaling in random networks,
1999, Science 286, 509-512 .

 Albert, R., Jeong, H. and Barabasi, A.-L.,
The diameter of the world-wide web,
1999, Nature (London) 401, 130-131; cond-mat/9907038.

 Barabasi, A.-L., Albert, R., and Jeong, H.,
Mean-field theory for scale-free random networks,
1999, Physica A 272, 173-187.

e Barabasi, A.-L.,
Linked: The New Science of Networks,
Perseus, Cambridge, MA (2002).
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Property 1: small world

1998: Watts-Strogatz
random rewiring

Regular Small-world

P= 0 p= 1
Increasing randomness

FIG. 15. The random rewiring procedure of the Watts-Strogatz
model, which interpolates between a regular ring lattice and a
random network without altering the number of nodes or
edges. We start with N=20 nodes, each connected to its four
nearest neighbors. For p=0 the original ring is unchanged; as
p increases the network becomes increasingly disordered until
for p=1 all edges are rewired randomly. After Watts and Stro-
gatz, 1998.

1967: Milgram
“6 degrees of separation”

i = e : T h

ft o0’ d "o g o i ]

- O i

osl ° Clp)/ C(0) © ]

L [ ] -

o 4

06 —
r L 2

o

0.4 o -

L L/ Lo e ]

oal (p) / L(O) . 1

L . J

i e ¢ e

0 e ot a sl L oa sl M SR A W | el =..=.III

3.0001 0.001 0.01 0.1 1

P

FI1G. 16. Characteristic path length #(p) and clustering coef-
ficient Ci{p) for the Watts-Strogatz model. The data are nor-
malized by the values #(0) and C(0) for a regular lattice. A
logarithmic horizontal scale resolves the rapid drop in #(p).

corresponding to the onset of the small-world phenomenon.

During this drop C(p) remains almost constant, indicating
that the transition to a small world is almost undetectable at
the local level. After Watts and Strogatz, 19U5.

log N
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Property 2: high clustering 1

Tk (k —1)/2

0

4/6

2/3
2/6 1

6/15

C=0.1917 C=0.6333

In both cases M=13 and N=8, but in the right picture many more
friends are themselves direct friends to each other

I “Empirical Networks” have a significantly higher clustering-
coefficient than ErdosRenyi-RandomGraphs !
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Bipartite Graphs A

a—.\{ l-I__-—l'
(A) (B

i

Up to now we have only
seen so called 1-mode graphs,
l.e. there is one type of vertices

Now imagine for example
4 films (black) and
11 playing Actors (white).

From the 2-mode graph

FI1G. 14, A schematic representation of a bipartite graph, such

we Can generate a as the graph of movies and the actors who have appeared in
1_m0de graph by them. In this small graph we have ]uur.mmua l1.x.l~_}l l to 4

. . and eleven actors, labeled A to K, with edges joining each
prOJeCtlon movie to the actors in its cast. The bottom figure shows the

(under iInformation |OSS) one-mode projection of the graph for the eleven actors. After

Newman. Strogatz, and Watts (2001 ).
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Property 3: scale free
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FI1G. 2. Degree distribution of the World Wide Web from two
different measurements: O, the 325 729-node sample of Albert
et al. (1994): O. the measurements of over 200 million pages by
Broder et al (2000): {(a) degree distribution of the outgoing
edges: (b) degree distribution of the incoming edges. The data
have been binned logarithmically to reduce noise. Courtesy of
Altavista and Andrew Tomkins. The authors wish to thank
Luis Amaral for correcting a mistake in a previous version of
this figure (see Mossa ef al.. 2001).

MEASURED networks:

for k large:

degree distribution is
not Poissonian (with
exponential tail)

but "fat tail"
- falling power-law

P(K) :k%

y ~2.5

An average <k> doesn‘t
really make sense here
= no built-in scale

- . scale-free"
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property 3: scale free
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FIG. 3. The degree distribution of several real networks: (a)
Internet at the router level. Data courtesy of Ramesh Govin-
dan: (b) movie actor collaboration network. After Barabasi
and Albert 1999, Note that if TV series are included as well,
which aggregate a large number of actors, an exponential cut-
off emerges for large k (Amaral ef al., 2000); {¢) co-authorship
network of high-energy physicists. After Newman (2001a.
2001b): (d) co-authorship network of neuroscientists. After
Barabasi et al. (2001).

Now an incredible run on real life
data started...

Almost identical scale-free
distributions were measured in totally
different objects, here e.qg.

a) Internet Router

b) Actor-Movie-network

c) coauthors high energy physics
d) coauthors neuro sciences

| The measurements(!) almost
perfectly lie on a straight line!

I And the power-law exponents differ
only a little!
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Property 3: scale free —
Some objects that seem to have a scale-free degree

o« WWW

* Internet-Routing

* Protein-Protein-docking
e citations

e collaborations

— publications

— Movie-Actor-Network
 Human Sexuality Networks
e Telefone calls
e brains

— Caenorhabditis elegans

— Humans
e computer code

« The Word Web of language

CIoss & ot

Distribution of numbers of connections, P(k)

10-10 0 |1 Iﬂ I-> |4 5 [
10" 10 10° 10° 10 10° 10°

Mumbers of connections of words, k

FIts. 9. The distribution of the mumbers of connections
(degrees) of words in the word web in a log-log scale [|126].
Fmpty and [illed circles show the distributions of the munber
ol connections obtained in Rel. for two different meth-
ods of the construction of the Word Web. The solid line is
the result of theory of Rel. (see Sec, where the pa-
rameters of the Word Web, namely, the size & 22 470 000 and
the average number of connections of a node, F(t) =~ 72, were
nsed.  The arrows indicate the theoretically obtained poini

ol crossover, fepress between the regions with dillerent power

laws, and the cutoll keyr due to the size effect. For a better

comparison, the theoretical curve is displaced upward to ex-
clude two experimental points with the smallest & (note that

the comparison is impossible in the region of the smallest &

where the empirical distribution essentially depends on the

delinition of the Word Web).
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citations of the Phys. Rev. D 11-50 (1975-1994) 24,296 351, 872 v = 3.0 1B7]
“———" {another fitting of the same data) v = 2.6 [@]
“— " (another estimate from the same data) vi = 2.3 [@,]
citations of the Phys. Rev. D (1982-June 1997) — — 1= 1.9 [Lod]
collaboration network of movie actors 212, 250 61, 085, 555 2.3 [

* " (another fitting of the same data) 3.1 03]
collaboration network of MEDLINE 1, 388, 989 1.028 107 2.5 [@
collaboration net collected from mathematical journals 70,975 0.132 = 10° 2.1 [
collaboration net collected from neuro-science journals 209, 293 1.214 = 10° 2.4 E|
networks of metabolic reactions ~ 500 — 800 ~ 1500 — 3000 Vi = [

e =

net of protein-protein interactions (yeast proteome 3 1870 2240 ~ 2.b [@,@]
word web * 470, 000 17, 000, 000 1.5 [24]
digital electronic circuits 2 % 104 4% 104 3.0 []
telephone call graph® 47 x 108 8 % 107 =21 [@]
web of human sexual contacts® 2810 — 3.4 [[134]]
food webs 7 93 — 154 405 — 366 ~1 [fad]

TABLE I. Sizes and values of the 4 exponent of the networks or subgraphs reported as having power-law (in-, out-) degree

distributions. For each network (or class of networks) data are presented in more or less historical order, so that the recent
exciting progress is visible. Errors are not shown (see the caption of Fig. @j They depend on the size of a network and on
the value of 4. We recommend our readers to look at the remark at the end of Sec. before using these values.  'The
data for the network of operating AS was obtained for one of days in December 1999.  ?The value of the v exponent was
estimated from the degree distribution plot in Hef. |ﬂ| 3The network of protein-protein interaction is treated as undirected.
4The value of the v exponent for the word web is given for the range of degrees below the crossover point (see Fig. @} ®The
out-degree distribution of the telephone call graph cannot be fitted by a power-law dependence (notice the remark in Sec. @).
5In fact, the data was collected from a small set of vertices of the web of human sexual contacts. These vertices almost surely
have no connections between them. ' These food webs are truly small. In Refs. ,EI] degree distributions of such food webs

were interpreted as exponential-like.



First Model
Albert Barabasi: Preferential-Attachment

1. Growth ! Not in static systems...

« Pertime step 1 new node
and m new edges

2. Preferential Attachment
e y~X:new node y, an old node x, but which one?
 Probability to choose x linearly proportional to current degree of x:

P(deg(x)=k;) = k; / sum(k;

,the rich get richer “

YES - scale-free, exponent gamma=3
YES - small world property
NO  ->high clustering
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Some more topics: Topology analysis

assortative (homophily) vs. dissassortative
degree-degree correlations
(human vs. technology/nature)

community clustering algorithms (dozens of);
modularity measure for ideal partitioning

fallure vs. attack:

glant component / percolative situation
(~any node can reach ~any node)
destroyed difficult vs. easily
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Some more topics:
Processes on networks

Ising model, percolation
Synchronisation, Voter models
Epidemiology:

How do infections spread on networks?

— Already in the first Watts/Strogatz 1998 paper:
Infection time until all infected
~ mean path length L ~ log(N) in small worlds !

— Infection threshold A, :

 on ER random graph (or lattice) there is a positive critical
Infection rate A_>0 below which the epidemy dies out
and above which the population dies out

 BUT on scale-free graphs with gamma > 3
epidemies are possible which don‘t die out with A_.~0'!
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This can only be a very short glance

In a way, the whole subject was been born out of the Internet,
which is not a small but at least a medium sized system

(e.g. ~ 101 webpages) and can be measured much easier
than nature or society

Our explanatory approach usually goes for the
J<Jhermodynamical limit“ of N=>infinity;
very different from the sociological viewpoint

Within 6 years, some 3000(?) papers have been published
about networks in the physics community
pre-prints on www.arxiv.org = cond-mat

Many scientists leave their (neighbouring) field and do
research on networks now

It resembles a little bit the hype of the 80ies
,Fractals/Nonlinearity/Chaos,, — everything was a fractal
back then, now everything is networks
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Many thanks
for your attention!

networks@AndreasKrueger.de
www . AndreasKrueger .de/networks

Sugqgestions for reading:

Linked: The New Science of Networks,
Barabasi, A.-L.; Perseus Cambridge MA (2002).
Written very fluffily & easy to read, “Prosa”

Statistical Mechanics of Complex Networks

Reka Albert and Albert-Laszlo Barabasi, 2001
arxXiv.cond-mat/0106096 ( www.arxiv.org )

54 pages review-article; not new, but a very good introduction
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