The Epidemics of Corruption

Philippe Blanchard Andreas Krueger Tyll Krueger Peter Martin

<u>arxiv:physics/0505031</u> <u>www.AndreasKrueger.de/networks</u>

Corruption? Imagine any contagion process with

- 1. Neighbour infection
 - Threshold contagion, i.e. local infection only if "level of corruption of my neighbours exceeds Δ"
 - plus small infection probability if less than Δ
- 2. Mean field infection ~ total prevalence
- Mean field desinfection ~ number of uninfected

e.g.:

- opinions, fashions, ...
- waves of scientific hypes, discussed topics...
- transition to a democratic society, sustainable society, ...
- innovation processes
- Corruption...

2 of 40

Main features and findings

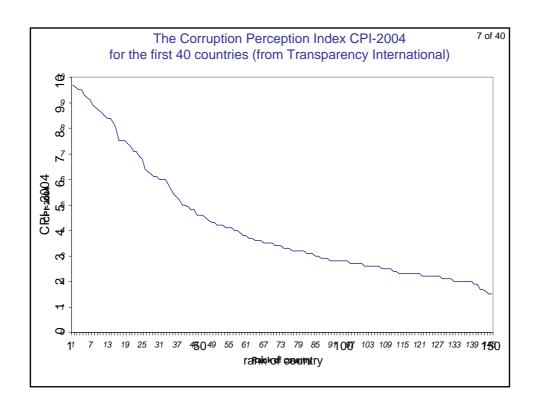
- generalized epidemic process
- on the graph of social relationships
- strong nonlinear dependence of transmission probability on local density of corruption
- additional mean field influence of the overall prevalence of corruption in society
- · Global-Local interaction, fatal resonance
- · Existence of an infection threshold
- important role:
 - network clustering (local redundancy of contact paths)
 - degree-degree correlation (hierarchical vs. more democratic)
- we study:
 - phase transitions
 - interaction of the processes
 - influence of graph structure

4 of 40

Corruption:

few attempts to model mathematically

- Microeconomics, game theory, maximizing profit functional, mean corruption, stability analysis
- cellular automata, simple state variables, local interaction dynamics, often only on 1-dim lattice (nevertheless complex dynamics)


Our way:

Similar to 2., but on complex networks

Corruption

- Human social interaction
 Deviation from fair play (cultural context)
- Misuse of (public) power
 Gain profit in a more or less illegal way
- · Criminal act, but also state of mind
- Typology of corrupt actors: highly educated, well positioned, not thinking to have done s.th. wrong
- Notorious problem to get empirical data

-	The Corrupti	on Perce	eption I	ndex CPI-	2004	6 of 40
			•		nternational)	
Rang	Länder	CPI2004	Rang	Länder	CPI2004	
1	Finnland	9.7	21	Barbados	7.3	
2	Neuseeland	9.6	22	Frankreich	7.1	
3	Dänemark	9.5	23	Spanien	7.1	
4	Island	9.5	24	Japan	6.9	
5	Singapur	9.3	25	Malta	6.8	
6	Schweden	9.2	26	Israel	6.4	
7	Schweiz	9.1	27	Portugal	6.3	
8	Norwegen	8.9	28	Uruguay	6.2	
9	Australien	8.8	29	Oman	6.1	
10	Niederlande	8.7	30	Vereinigte Arabische	6.1	
11	Großbritannien	8.6	31	Botswana	6	
12	Kanada	8.5	32	Estland	6	
13	Österreich	8.4	33	Slowenien	6	
14	Luxemburg	8.4	34	Bahrain	5.8	
15	Deutschland	8.2	35	Taiwan	5.6	
16	Hongkong	8	36	Zypern	5.4	
17	Belgien	7.5	37	Jordanien	5.3	
18	Irland	7.5	38	Katar	5.2	
19	USA	7.5	39	Malaysia	5	
20	Chile	7.4	40	Tunesien	5	

Corruption state variables

8 of 40

 $\omega(x, t)$ in [0,1]

= node x is corrupt/non-corrupt at time t

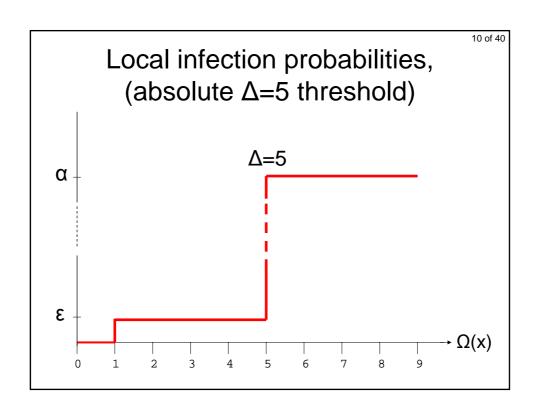
 $\Omega(x, t)$

= number of infected neighbours at time t

$$=\sum_{y\sim x}\omega(y,t)$$

b_t = total prevalence of corruption at time t

$$b_{t} = \frac{1}{|V|} \sum_{y \in V} \omega(y, t) \qquad |V| = \text{number of nodes}$$


Implemented LOCAL Processes:

<u>α-process:</u> "if enough neighbours..."

- The <u>local</u> transmission probability for # of corrupt neighbours ≥ Δ
- Typical value: α>>ε,β,γ
- Possible translations:
 Influenceability by others, Decisiveness

E-process: "if at least one neighbour ..."

- The (classical) <u>local</u> epidemic probability for # of corrupt neighbours < Δ
- Typical value: ε<<α,β,γ (very small)
- Possible translations: Naiveity

The threshold Δ or δ :

Let d(x) be the degree of node x and $\Omega(x)$ the number of infected neighbours

Absolute threshold A

The α -process can happen if $\Omega(x) \ge \Delta$ regardless of the degree d(x) of a node

 \rightarrow nodes with d(x) < \triangle are irrelevant for the α -process

 \rightarrow hubs with d(x) >> \triangle are easily infected by the the α -process

Relative threshold Δ

The α process can happen if $\Omega(x) / d(x) \ge \delta$

 \rightarrow Any node can be taken by the α -process

 \rightarrow hubs with d(x) >> \triangle are more difficult to infect

We have concentrated on the absolute threshold Δ because easier to treat analytically – and due to lack of time \odot

12 of 40

Implemented GLOBAL Processes:

<u>β-process:</u> "infection through public opinion"

- The mean field transmission process due to the total (believed) prevalence of corruption
- Typical value: ε<β<γ
- Possible translations:

"Random" infection: How informed are you? How much do you belief in mass media?

<u>v-process:</u> "(only) the healthy can cure others"

- The (mean field!) corruption recover process due to the fight of the (healthy) society against corruption
- Typical value: β<γ<α
- Possible translations:
 random resistance / recovering / cleaning

GLOBAL processes, cntd.

β-process: mean-field infection

- proportional to total prevalence b_t
- Individual has to overcome "fear" fear is proportional to uninfected part (1-b_t)

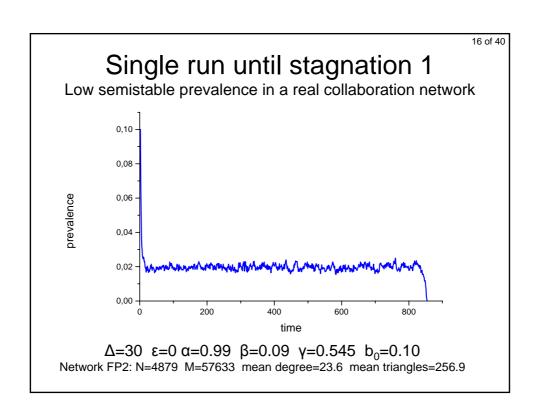
$$\Pr_{\beta}(\omega_{t+1} = 1 \mid \omega_t = 0) = \beta(b_t)(1 - (1 - b_t)) = \beta(b_t)^2$$

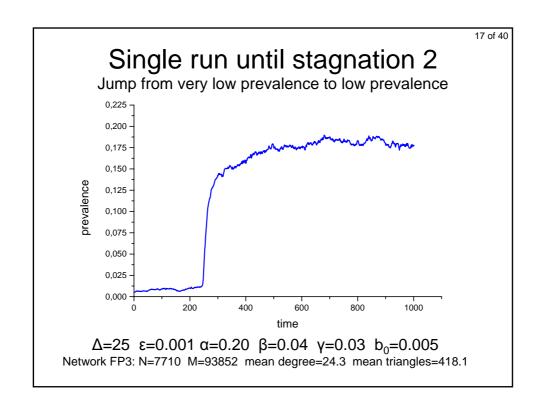
y-process: mean-field des-infection

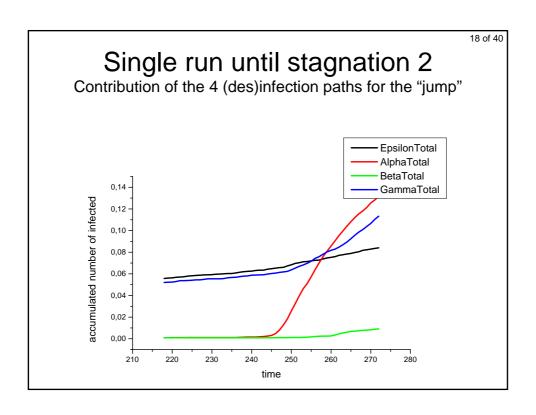
Only the healthy can cure
 ⇒proportional to 1-total prevalence (1-b_t)

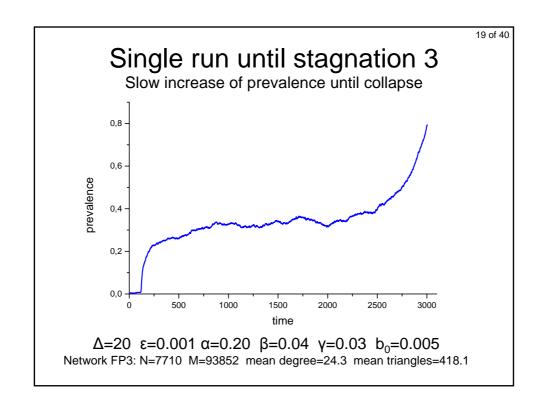
$$\Pr_{\gamma}(\omega_{t+1} = 0 \mid \omega_t = 1) = \gamma(1 - b_t)$$

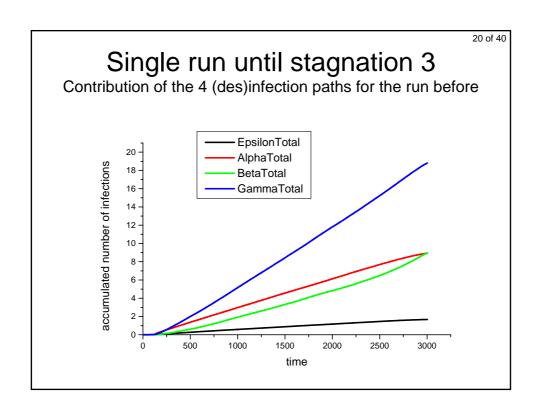
14 of 40

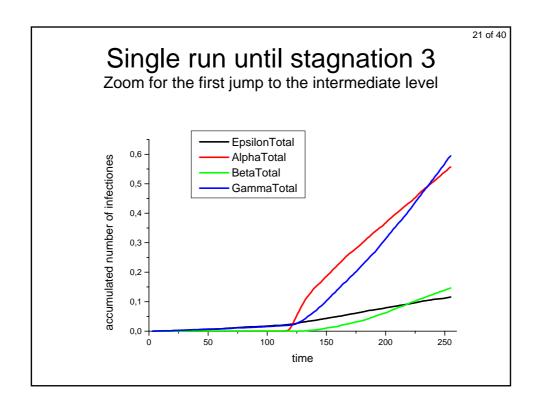

The networks

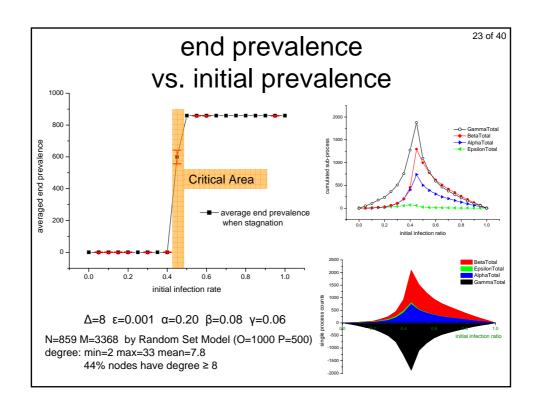

- Erdösz-Renyi Random Graphs (RGs)
- <u>Triangle-Modified RGs</u>: Throw triangles first, then fill up with edges
- MolloyReed Algorithm to get arbitrary degree distribution, e.g. scale-free
 ! always multiplicative degree-degree correlation !
- Modified MolloyReed Algorithm: choose ~equal outdegree for all nodes
 - → additive degree-degree correlation
- "Real world" <u>empirical networks</u> of the EU-funded R&D projects (projects and organizations from CORDIS database of the European commission)
- <u>Set graphs</u>, intersection graphs, "affiliation networks", unipartite projections of such bipartite graphs ...

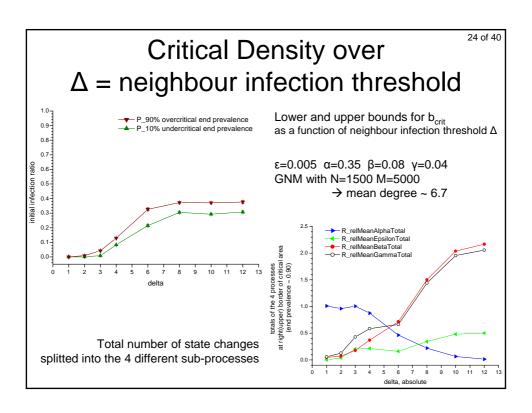

Structure of the Python Program

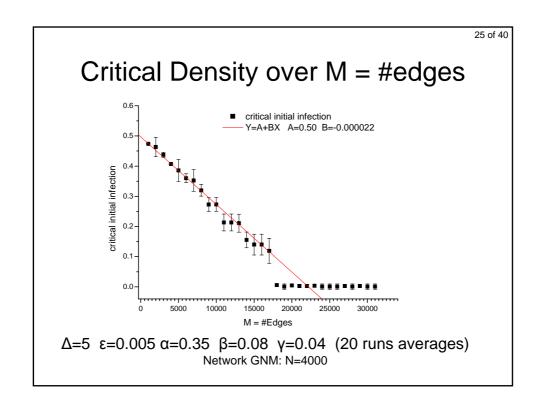

Initial infection with b₀ corrupt nodes (random/ball)

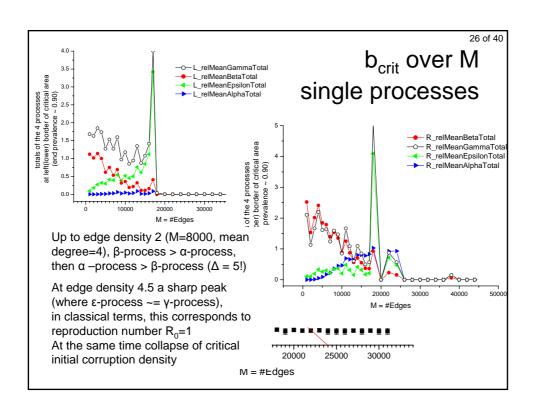

- →update one vertex
 - →all vertices, sync update
 - →do until stagnation
 get: end prevalence (usually ~0 or ~1)
 - → many runs to get average end prevalence
 - →Transition finder: vary b₀ to locate b_{undercrit} and b_{overcrit} and get (mean value) b_{crit}
 - sweep (network property)
 X=N, M, T or λ to plot b_{crit} over X



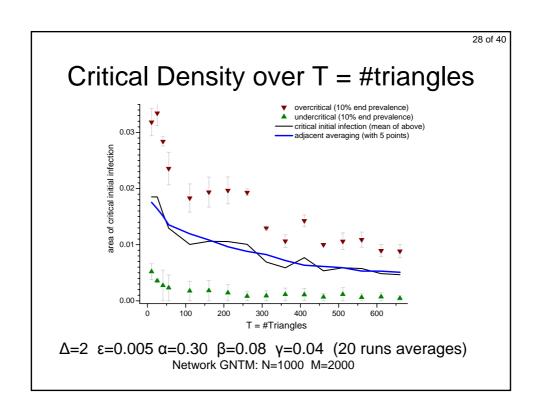



...(end of) single runs

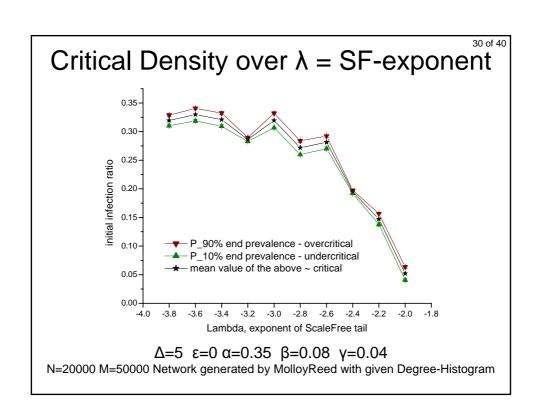

- Possibility for a fatal resonance between local (ε, α) and mean-field process (β)
- Single-Process plots very useful to understand the rich behaviour


critical density ...

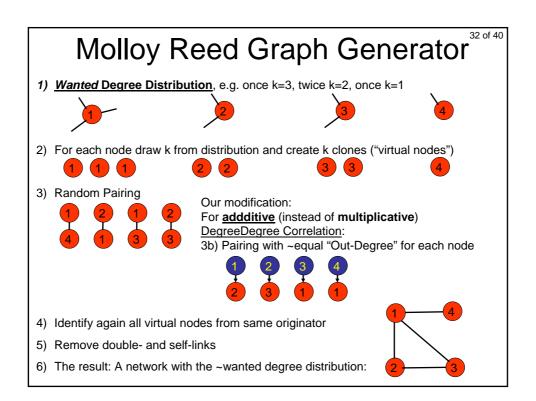
- ...will now be THE interesting parameter
- How does it change when we vary parameters or graph properties?



Phase transition with respect to Initial Number of Infected Nodes


Classical epidemic process is:

- either overcritical (reproduction number R₀>1)
 → and a single initially infected infects a positive fraction with positive probability
- or undercritical (R₀<1)
 → all infected will die out, everyone's healthy
 In corruption infection:
- both (mean-field and local) processes can have phase transitions with respect to the initial density of corrupt vertices


Clustering helps corruption

- In classical epidemics, local clique-clustering slows down the disease spreading because of re-infection instead of the infection of healthy
- Here, though, the highly clustered, mediumdegree vertices are especially well-suited for the spread of corruption, because a threshold Δ of neighbours has to be corrupt to trigger the α-process

Critical Density over $\lambda = SF$ -exponent

- There seems to be a phase transition around $\lambda=2.4$ for $\Delta=5$ (around $\lambda=2.9$ for $\Delta=2$)
- not at λ=3 (where structural phase transition, λ<3: expected pathlength finite), probably due to finite size effects (N=20000 only)

33 of 40 Molloy Reed algorithm Out-Degree ~ Degree In-Degree ~ Degree → Multiplicative DegreeDegree Correlation **Modified Molloy Reed algorithm** Out-Degree ~ 2M/N In-Degree ~ (Degree - (2M/N)) ~ Degree → Additive DegreeDegree Correlation

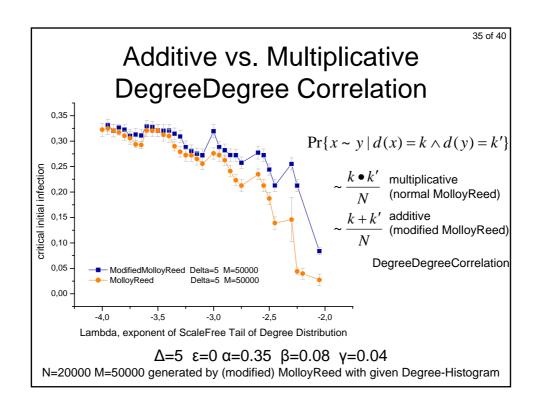
Multiplicative DegreeCorrelations: Chains of almost sure 40 linkages from high degree to low degree vertex sets

$$\Pr\{x \sim y \mid d(x) = k \land d(y) = k'\} \sim \frac{k \bullet k'}{N} \quad \text{multiplicative}$$
Why in graphs with such a correlation the threshold by $\Rightarrow 0$ for $N \Rightarrow 2$

Why in graphs with such a correlation the threshold $b_{crit} \rightarrow 0$ for $N \rightarrow \infty$?

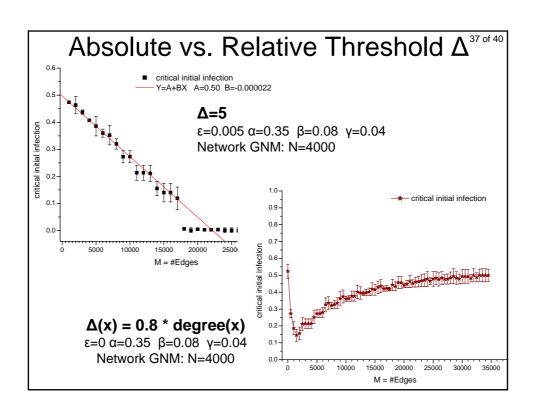
For fixed $b_0 > N^{\frac{1}{\lambda}-\nu}$ and v>0 the vertices x with $d(x) \ge k_0 >> \Delta/b_0$ get almost surely infected via the α -process (as long as $\gamma < \alpha$). Let A_{k0} be the set of such vertices.

A vertex y with $d(y)=k < k_0$ is linked to the set A_{k0} with probability q_k


For vertices y with $d(y) > k_0^{\lambda-2}$ one has almost sure linkage to the set A_{k0} (because q_k close to 1). Now infection via α –process...

$$\begin{split} q_k \sim 1 - \prod_{k' \geq k_0}^{k_{\text{max}} \sim N^{\frac{1}{\lambda}}} \left(1 - \frac{const \cdot k \cdot k'}{N}\right)^{const \cdot \frac{N}{(k')^{\lambda}}} \\ \sim 1 - e^{-const \cdot \frac{k}{N} \sum\limits_{k' \geq k_0}^{N} \frac{N \cdot \frac{k'}{(k')^{\lambda}}}{(k')^{\lambda}}} \sim 1 - e^{-const \cdot k \frac{1}{k_0^{\lambda - 2}}} \end{split}$$

→ Positive N-independent infection density $b_t >> b_0$ such that the β -process is overcritical, ! N has to be large, possible reason and finally the whole vertex set corrupt


for our λ ~2.4 instead of λ ~3 transition

For SF-graphs with additive degree correlation this argument about chains of almost sure linkages from high degree to low degree cannot be adopted. One therefore expects a higher value of the critical density b_{crit} for additive DegreeCorrelation, so the system is not as susceptible for corruption.

Additive vs. Multiplicative DegreeDegree Correlation

- SF-Networks with multiplicative DegreeCorrelation (hierarchical, ...) are more easily corrupted than those with additive DegreeCorrelation (polycentric, democratic)
- Especially true for low λ < 3 (where very big hubs can exist).

Absolute and relative threshold **\Delta**

Degree dependent threshold:

$$\Delta(x) = 0.8 * degree(x)$$

- There is still a critical density, but the value *increases* with the edge density
- because the mean threshold increases proportionally to the mean degree

Epidemic Control

- This is an ABSTRACT model!
 Only structural & schematic tendencies!
- Positively correlated to corruption:
 α & ε = strength of influence of others
 β = strength of e.g. mass media
- Negatively correlated to corruption:
 Δ=How many neighbours have to be corrupt?
 γ=How strong does the society fight back?
- · avoid high clustering
- "Transparency": Δ↑ α↓ β↓
- "Police": β↓(increase of fear), γ↑(uncovering rate) but γ> α, β is a "total police state"
- Moral resistance: Δ↑ α↓
- (Hierarchical) Decision Systems should be as flat, independent, polycentric as possible!

Perspectives

40 of 40

- Faster, faster, faster (bigger systems, esp. SF!)
- Deeper understanding of α-process (already non-trivial on trees!)
- Quenched disorder in all parameters
- More topology-dependent processes (like relative $\Delta = d(x)*0.8$)
 - e.g. hubs react differently from leaves
 - cliquish-people react stronger to neighbours ($\alpha \uparrow \beta \downarrow$) than lowly connected people who react stronger to mass media ($\alpha \downarrow \beta \uparrow$)
- Corruption state variable not only 0 or 1
- Evolving networks, interaction of process and structure, e.g. selection of (non)corrupt neighbours
- Weighted networks
- Degree weighted total corruption prevalence
- Application to other fields (e.g. innovation dynamics)
- Your suggestions?

Thank you for your attention!

The Epidemics of Corruption

Philippe Blanchard Andreas Krueger Tyll Krueger Peter Martin

<u>arxiv:physics/0505031</u> <u>www.AndreasKrueger.de/networks</u>

42 of 40