

NEMO

EC-project in 6th FP

Dr. Andreas Krueger

Network Models, Governance and R&D collaboration networks

Some research images

NEMO: EC project

NEMO is a three-year project (2006-2009) supported by the New and Emerging Science and Technology programme of the sixth Framework Programme of the European Commission.

NEMO studies ways to optimize the structure of R&D collaboration networks for creating, transferring and distributing knowledge.

The Mathematical Physics department of the University of Bielefeld (Prof. Philippe Blanchard), Germany, is involved in work package 2 "Structure and dynamics of complex random graphs and associated processes".

I currently continue with similar work in the IRU.

Following are images from 5 years of (pre-)NEMO research ...

INNOVATION

NEM(

Network analysis

... studies and compares databases with respect to connectivity ...

NEMC

INNOVATION

NEMO Bipartite Network from Organisations and Projects in CORDIS database (FP = Framework Programme)

then

Organisations-Projection (connect when common project)

then SNA = (Social) Network Analysis with standard measures

graph characteristic	FP1	FP2	FP3	FP4
# vertices: N	2500	6135	9615	20873
(N for larg. comp.)	(2038)	(5875)	(8920)	(20130)
N outside larg.comp.	462	260	695	743
# edges: M	9557	64300	113693	199965
(# edges M larg.comp.)	(9410)	(64162)	(113219)	(199182)
mean degree: \bar{d}	7.65	20.96	23.65	19.16
$(\bar{d} \text{ larg.comp.})$	(9.23)	(21.84)	(25.39)	(19.79)
maximal degree: d_{max}	140	386	648	649
mean triangles per vertex: \triangle	22.90	169.70	244.91	146.04
$(\triangle \text{ larg.comp.})$	(27.97)	177.16	263.84	151.26
maximal triangle-number	966	5295	15128	10730
cluster coefficient: \bar{C}	0.57	0.72	0.72	0.79
(\bar{C} larg. comp.)	(0.67)	(0.74)	(0.75)	(0.81)
number of components	369	183	455	467
diameter of largest component	9	7	9	10
mean path length: λ of l.c.	3.70	3.27	3.32	3.59
exponent of degree distribution	-2.1	-2.0	-2.0	-2.1
variance of degree exponent	0.4	0.3	0.3	0.3
exponent of org-size distr.	-2.1	-1.9	-1.7	-1.8
variance of size exponent	0.5	0.3	0.5	0.3
mean # projects per org: $\mathbb{E}\left(O \right)$	2.40	4.87	5.6	6.24
maximal size $(\max O)$	130	82	138	172

TABLE II: Basic network properties of FP1–4 organizations projection.

Synthetic Networks

... create random networks to identify which measurements are essential ...

"degree" of a network node = number of neighbors

Networks with identical degree distributions can have very different degree correlations.

We compared the NEMO empirical networks with differently generated synthetic random networks.

INNOVATION

NEMC

Communication Index

... some networks are balanced better with respect to communication ...

Our new network measure is a proxy to estimate the communication saturation of nodes in networks

communication edge weight (blue) = $min(\frac{1}{\deg(x)}, \frac{1}{\deg(y)})$

node-sum (black)
= sum of all edge weights
around one node

mean value (of all black numbers) in this example network: 0.75 = "communication index" of the network

UCD CASL IRU - Innovation Research Unit - Complex & Adaptive System Lab - University College Dublin

NEMO

INNOVATION

Several competing and resonating processes:

- local infection:
 - classical epidemics (like a flu)
 - threshold epidemics if $\Omega(x, t) \ge \Delta$
- mean-field infection (e.g. by mass media)
- passive and active knowledge
 - passive knowledge can become active knowledge
 - active knowledge cannot be forgotten

Initial infection:

"seed group" of interconnected nodes

From 5% initial infection into 100% stagnation within 800 time steps ...

FP1

FP2 FP3

12

14

16

10

8

delta

0.6

0.4

0.2

0.0

0

2

4

I am strongly susceptible to the (new) knowledge.

6

"End prevalence" is the average outcome of a single infection run.

"Delta Δ " is the threshold of infected neighbors above which

IRU: Innovation Research Unit

located at CASL: Complex and Adaptive Systems Lab 8 Belfield Office Park Beaver Row, Clonskeagh, Dublin 4

http://casl.ucd.ie/iru/

Tel +353 1 716 5394 Fax +353 1 716 5709

IRU@ucd.ie