

NEMO: EC-project in 6th FP Network Models, Governance and R&D collaboration networks

Dr. Andreas Krueger

UCD Innovation Research Unit (IRU), Complex Adaptive Systems Laboratory (CASL), University College Dublin (UCD), Ireland

NEMO is a three-year project (2006-2009) supported by the New and Emerging Science and Technology programme of the sixth Framework Programme of the European Commission. NEMO studies ways to optimize the structure of R&D collaboration networks for creating, transferring and distributing knowledge. The Mathematical Physics department of the University of Bielefeld (Prof. Philippe Blanchard), Germany, is involved in work package 2 "Structure and dynamics of complex random graphs and associated processes". The following are images from our 5 years of (pre-)NEMO research. Similar work is now being carried out in the IRU.

Network Analysis

Studies and compares databases with respect to connectivity ...

NEMO Bipartite Network from Organisations and Projects in CORDIS database (FP = Framework Programme) then Organisations-Projection (connect when common project) then SNA = (Social) Network Analysis with standard measures

graph characteristic	FP1	FP2	FP3	FP4
# vertices: N	2500	6135	9615	20873
(N for larg. comp.)	(2038)	(5875)	(8920)	(20130)
N outside larg.comp.	462	260	695	743
# edges: M	9557	64300	113693	199965
(# edges M larg.comp.)	(9410)	(64162)	(113219)	(199182)
mean degree: d	7.65	20.96	23.65	19.16
$(\bar{d} \text{ larg.comp.})$	(9.23)	(21.84)	(25.39)	(19.79)
maximal degree: d_{max}	140	386	648	649
mean triangles per vertex: △	22.90	169.70	244.91	146.04
(△ larg.comp.)	(27.97)	177.16	263.84	151.26
maximal triangle-number	966	5295	15128	10730
cluster coefficient: \bar{C}	0.57	0.72	0.72	0.79
(\bar{C} larg. comp.)	(0.67)	(0.74)	(0.75)	(0.81)
number of components	369	183	455	467
diameter of largest component	9	7	9	10
mean path length: λ of l.c.	3.70	3.27	3.32	3.59
exponent of degree distribution	-2.1	-2.0	-2.0	-2.1
variance of degree exponent	0.4	0.3	0.3	0.3
exponent of org-size distr.	-2.1	-1.9	-1.7	-1.8
variance of size exponent	0.5	0.3	0.5	0.3
mean # projects per org: $\mathbb{E}(O)$	2.40	4. 87	5.6	6.24
maximal size (max O)	130	82	138	172

TABLE II: Basic network properties of FP1–4 organizations projection

Communication Index

Some networks are balanced better with respect to communication...

Our new network measure is a proxy to estimate the communication saturation of nodes in networks

 $\begin{array}{ll} \text{communication edge weight} \\ \text{(blue numbers) =} & min\big(\frac{1}{\deg(x)},\frac{1}{\deg(y)}\big) \end{array}$

node-sum (black numbers) = sum of all edge weights around one node

mean value (of all black numbers) in this example network:

0.75 = "communication index" of the network

Generalised Epidemic Process Knowledge Diffusion Model

 $\omega(x, t)$ in [0,1]

= node x is knowing / not-knowing at time t

Local infection:

 $\Omega(x, t)$ = number of infected neighbours

Mean-field infection:

b_t = total prevalence of knowing nodes at time t

$$b_t = \frac{1}{|V|} \sum_{y \in V} \omega(y, t)$$

<u>Generalised Epidemic Process</u> Knowledge Diffusion Model

Several *competing* and *resonating* processes:

- local infection:
 - classical epidemics (linear, like a flu)
- threshold epidemics if $\Omega(x, t) \ge \Delta$
- mean-field infection (e.g. by mass media)
- passive knowledge can become active knowledge
- active knowledge cannot be forgotten **Initial infection:**

"seed group" of interconnected nodes

- · done for each node
- synchronous update (no path dependence)
- runs until stagnation (nothing happens anymore)
- intermediate and end results are stored

Studied: dependence on initial infection

"Delta Δ" is the threshold of infected of the should be shown which I am strongly susceptible to the (new) knowledge.

"End prevalence" is the average outcome of a single infection run.

Synthetic Networks

Create random networks to identify which measurements are essential

"<u>degree</u>" of a network node = number of neighbors

Networks with identical degree distributions can have very different degree correlations.

We compared the NEMO empirical networks with differently generated synthetic random networks.

