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GEP = Generalized Epidemic Process

Corruption as a GEP

Philippe Blanchard Andreas Krueqger

Tvll Krueger Peter Martin
ar xXi v: physi cs/ 0505031

My doctorate thesis consists of:
Introduction into Complex Networks & SNA (incl. “ethics” chapter)

1. The Network of EC-funded R&D projects (CORDIS database)

2. | “Corruption” — simulation of a contagion process on networks

3. CAMBO clustering — finding clusters in networks by matrix reordering

-> www.AndreasKrueger.de/networks - dissertation/disputation

Corruption?
Imagine any contagion process with

1. Neighbour infection

— Threshold contagion, i.e. local infection only if
.level of corruption of my neighbours exceeds A"

— plus small infection probability if less than A
2. Mean field infection
3. Mean field desinfection

e.q.:

« opinions, fashions, ...

» waves of scientific hypes, discussed topics...

» processes of innovation diffusion, knowledge diffusion
« Corruption...




Corruption state variables
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Implemented LOCAL Processes:

a-process: “if enough neighbours...”

* The local transmission probability
for # of corrupt neighbours = A

« Typical value: a>>¢,B,y

» Possible translations:
Influenceability by others, Decisiveness

€-process: “if at least one neighbour ...”

 (similar to classical) local epidemic probability
for # of corrupt neighbours < A

» Typical value: e<<a,B,y (very small)
» Possible translations: Naiveity, Openness
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Local infection probabilities,
(absolute A=5 threshold)

A=5
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Implemented GLOBAL Processes:
B-process: “infection through public opinion”

« The mean field transmission process due to
the total (believed) prevalence of corruption

» Typical value: e<p<y
» Possible translations:

“Random” infection: How informed are you?
How much do you belief in mass media?

Pr, (., =1l =0)= (B)(1-(1-h)) =B()’

y-process: “(only) the healthy can cure others”

» The (mean field!) corruption recover process due to
the fight of the (healthy) society against corruption

« Typical value: B<y<a
» Possible translations:
random resistance / recovering / cleaning

Pr(o,,=0|o, =D)=y(1-h)
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Single run until stagnation 1

Low semistable prevalence in a real collaboration network
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Network FP2: N=4879 M=57633 mean degree=23.6 mean triangles=256.9
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Single run until stagnation 2

Jump from very low prevalence to low prevalence
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Single run until stagnation 2

Contribution of the 4 (des)infection paths for the “jump”
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...(end of) single runs: some insights

The Single-Process plots are very useful to
understand the rich behaviour

Exists possibility for a fatal resonance
between local (g, a) and mean-field process (B)

small accumulation of infection unnoticed
until a critical density (a point of no return)

of corruption is reached

—> then quickly complete saturation of society

Similar to other complex systems with hidden phase
transitions (e.g. climate)
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Structure of the Python Program

Initial infection with b, corrupt nodes (random/ball)
—>update one vertex
—>all vertices, sync update
—>do until stagnation Example  Legend
get: end prevalence (usually ~0 or ~1)
- many runs to get average end prevalence

—>Transition finder: vary b, to locate b,,qercrit
and b, .t and get (mean value) b

- sweep (network property)
X=N, M, T or A to plot b, over X

averaged end prevalence
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Find x

crit
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Interpolation of 10% / 90% y-value

but avoid critical area by linear

o TransitionFinder.py example run:
2 interpolated x-positions of y=10% (90%) function value
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Critical Density over
A = neighbour infection threshold
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Phase transition with respect to
Initial Number of Infected Nodes

In corruption infection:

* both (mean-field and local) processes can have
phase transitions with respect to the initial density
of corrupt vertices

Classical epidemic process is:

« either overcritical (reproduction number Ry,>1)
- and a single initially infected node infects
a positive fraction with positive probability

 or undercritical (Ry<1)
- all infected will die out, everyone’s healthy
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Critical Density over T = #triangles

v overcritical (10% end prevalence)

A undercritical (10% end prevalence)
critical initial infection (mean of above)
adjacent averaging (with 5 points)
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A=2 ¢=0.005 a=0.30 B=0.08 y=0.04 (20 runs averages)
Network GNTM: N=1000 M=2000
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Clustering helps corruption

* In classical epidemics, local clique-clustering
slows down the disease spreading because of
re-infection instead of the infection of healthy

* Here, though, the highly clustered, medium-
degree vertices are especially well-suited for
the spread of corruption, because a threshold
A of neighbours has to be corrupt to trigger the
a-process
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Additive vs. Multiplicative
DegreeDegree Correlation
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Multiplicative vs. Additive
Degree-Correlation

N.B.: identical degree distribution:
3 reds (degree 10); 8 blues (degree 4), 15 greens (degree 2), ...
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Additive vs. Multiplicative
DegreeDegree Correlation

» SF-Networks with multiplicative
DegreeCorrelation (hierarchical, ...)
are more easily corrupted than those
with additive DegreeCorrelation
(polycentric, democratic)

» Especially true for low A < 3
(where very big hubs exist).
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Epidemic Control

This is an ABSTRACT model!
Only structural & schematic tendencies!

Positively correlated to corruption:
a & € = strength of influence of others
B = strength of e.g. mass media

Negatively correlated to corruption:
A=How many neighbours have to be corrupt?
y=How strong does the society fight back?

avoid high clustering
“Transparency”: At al B}

“Police”: Bl (increase of fear), yt(uncovering rate)
but y> a, B is a “total police state”

Moral resistance: At a

(Hierarchical) Decision Systems should be as flat,
independent, polycentric as possible!
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Knowledge diffusion:
first thoughts

Infection: classical (epsilon) & threshold (alpha)

no / passive / active knowledge

activation triggered: local / global / spontaneous

mean field:

— the “active” publish

— there is a time lag

Forgetting: spontaneous & local effect
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Thank you very much

-> guestions?

www.AndreasKrueger.de/networks
-> dissertation/disputation
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critical initial infection

Absolute vs. Relative Threshold A™"
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global observable °
N
b="b = % > w(z) total knowledge prevalence (at time £)
x=1
local observables
Qu(z) = > wly) number of knowing neighbours of z = 3
zy
Di(z) = > ﬁw(y) local knowledge inflow =1+1/3+1/6 =1.5
zry
(yellow) unaware . knowing (red)

Inner structure of projects 0 /
is not FullGraph, but now

we account for that:

1/degree weighing of the 1/6 .
knowing neighbours 7 0 \
S
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