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GEP = Generalized Epidemic Process

Corruption as a GEP
Philippe Blanchard Andreas Krueger

Tyll Krueger Peter Martin
arxiv:physics/0505031

My doctorate thesis consists of:

• Introduction into Complex Networks & SNA (incl. “ethics” chapter)

1. The Network of EC-funded R&D projects (CORDIS database)

2. “Corruption” – simulation of a contagion process on networks

3. CAMBO clustering – finding clusters in networks by matrix reordering

 www.AndreasKrueger.de/networks dissertation/disputation

2 of 22Corruption?
Imagine any contagion process with

1. Neighbour infection
– Threshold contagion, i.e. local infection only if

„level of corruption of my neighbours exceeds Δ“
– plus small infection probability if less than Δ

2. Mean field infection
3. Mean field desinfection

e.g.:
• opinions, fashions, …
• waves of scientific hypes, discussed topics…
• processes of innovation diffusion, knowledge diffusion
• Corruption…
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Corruption state variables

ω(x, t) in [0,1]
= node x is corrupt/non-corrupt at time t

Ω(x, t)
= number of infected neighbours
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Implemented LOCAL Processes:
α-process: “if enough neighbours…”
• The local transmission probability

for # of corrupt neighbours ≥ Δ
• Typical value: α>>ε,β,γ
• Possible translations:

Influenceability by others, Decisiveness

ε-process: “if at least one neighbour …”
• (similar to classical) local epidemic probability

for # of corrupt neighbours < Δ
• Typical value: ε<<α,β,γ (very small)
• Possible translations: Naiveity, Openness
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Local infection probabilities,
(absolute Δ=5 threshold)
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6 of 22Implemented GLOBAL Processes:
β-process: “infection through public opinion”
• The mean field transmission process due to

the total (believed) prevalence of corruption
• Typical value: ε<β<γ
• Possible translations:

“Random” infection: How informed are you?
How much do you belief in mass media?

2
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γ-process: “(only) the healthy can cure others”
• The (mean field!) corruption recover process due to

the fight of the (healthy) society against corruption
• Typical value: β<γ<α
• Possible translations:

random resistance / recovering / cleaning

)1()1|0(Pr 1 ttt b 
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Single run until stagnation 1
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Δ=30 ε=0 α=0.99 β=0.09 γ=0.545 b0=0.10
Network FP2: N=4879 M=57633 mean degree=23.6 mean triangles=256.9

Low semistable prevalence in a real collaboration network
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Jump from very low prevalence to low prevalence
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Single run until stagnation 2
Contribution of the 4 (des)infection paths for the “jump”
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…(end of) single runs: some insights

• The Single-Process plots are very useful to
understand the rich behaviour

• Exists possibility for a fatal resonance
between local (ε, α) and mean-field process (β)

• small accumulation of infection unnoticed
until a critical density (a point of no return)
of corruption is reached
 then quickly complete saturation of society

Similar to other complex systems with hidden phase
transitions (e.g. climate)
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Initial infection with b0 corrupt nodes (random/ball)
update one vertex
all vertices, sync update
do until stagnation

get: end prevalence (usually ~0 or ~1)

Structure of the Python Program

Example Legend

 many runs to get average end prevalence
Transition finder: vary b0 to locate bundercrit

and bovercrit and get (mean value) bcrit

 sweep (network property)
X=N, M, T or λ to plot bcrit over X
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end prevalence
vs. initial prevalence
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44% nodes have degree ≥ 8

Critical Area
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Find xcrit but avoid critical area by linear
interpolation of 10% / 90% y-value
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TransitionFinder.py example run:
interpolated x-positions of y=10% (90%) function value

y~90% at x=4.58926 +/- 0.00067

y~10% at x=0.37311 +/- 0.00020

final result = critical 10/90% area, stopps when
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Critical Density over
Δ = neighbour infection threshold
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ε=0.005 α=0.35 β=0.08 γ=0.04
GNM with N=1500 M=5000

 mean degree ~ 6.7
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Phase transition with respect to
Initial Number of Infected Nodes

In corruption infection:
• both (mean-field and local) processes can have

phase transitions with respect to the initial density
of corrupt vertices

Classical epidemic process is:
• either overcritical (reproduction number R0>1)
 and a single initially infected node infects
a positive fraction with positive probability

• or undercritical (R0<1)
 all infected will die out, everyone’s healthy
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Critical Density over T = #triangles

Δ=2 ε=0.005 α=0.30 β=0.08 γ=0.04 (20 runs averages)
Network GNTM: N=1000 M=2000
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Clustering helps corruption

• In classical epidemics, local clique-clustering
slows down the disease spreading because of
re-infection instead of the infection of healthy

• Here, though, the highly clustered, medium-
degree vertices are especially well-suited for
the spread of corruption, because a threshold
Δ of neighbours has to be corrupt to trigger the
α-process
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DegreeDegree Correlation

})()(|~Pr{ kydkxdyx 

Δ=5 ε=0 α=0.35 β=0.08 γ=0.04
N=20000 M=50000 generated by (modified) MolloyReed with given Degree-Histogram

kk

kk





~

~ multiplicative
(normal MolloyReed)

additive
(modified MolloyReed)

DegreeDegreeCorrelation



10

19 of 22

Multiplicative vs. Additive
Degree-Correlation

N.B.: identical degree distribution:
3 reds (degree 10); 8 blues (degree 4), 15 greens (degree 2), …

20 of 22

• SF-Networks with multiplicative
DegreeCorrelation (hierarchical, …)
are more easily corrupted than those
with additive DegreeCorrelation
(polycentric, democratic)

• Especially true for low λ < 3
(where very big hubs exist).

Additive vs. Multiplicative
DegreeDegree Correlation
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Epidemic Control
• This is an ABSTRACT model!

Only structural & schematic tendencies!
• Positively correlated to corruption:
α & ε = strength of influence of others
β = strength of e.g. mass media

• Negatively correlated to corruption:
Δ=How many neighbours have to be corrupt?
γ=How strong does the society fight back?

• avoid high clustering
• “Transparency”: Δ↑ α↓ β↓
• “Police”: β↓(increase of fear), γ↑(uncovering rate)

but γ> α, β is a “total police state”
• Moral resistance: Δ↑ α↓
• (Hierarchical) Decision Systems should be as flat,

independent, polycentric as possible!
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Knowledge diffusion:
first thoughts

• Infection: classical (epsilon) & threshold (alpha)
• no / passive / active knowledge
• activation triggered: local / global / spontaneous
• mean field:

– the “active” publish
– there is a time lag

• Forgetting: spontaneous & local effect
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Thank you very much

 questions?

www.AndreasKrueger.de/networks
 dissertation/disputation
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