Communication Index a study of a new efficiency measure for networks – *work in progress !!!*

involved so far: Andreas Krueger Madeleine Sirugue-Collin Philippe Blanchard Sascha Delitzscher Tyll Krueger

6.3.2008 Math Encounters 34 Funchal, Madeira, PT

Where does it come from ...?

GEP modell for knowledge diffusion on networks the local interaction depends on how busy s.o. is

From that process to a static measure

- Let an existing edge x~y symbolize communication between node x and y
- Time someone *can* spend with neighbours be equally divided among them → 1/degree
- BUT: Relevant for the time that is actually spent ...
- ... is the more busy of both nodes:
 → edgeweight(x,y) = min [1/degree(x), 1/degree(y)]
- Sum of all such edgeweights around each x: communication ",capacity utilisation" (",workload") of x
- then Sum this over all nodes / take the average
 =: <u>"communication index</u>" of whole network

<u>UNIMODAL ORGs Projection (unweighted)</u> *Node statistics* of "capacity utilisation" ("workload")

<u>BIMODAL</u> (projects also treated as actors!) Node statistics of "capacity utilisation" ("workload")

<u>UNIMODAL ORGs Projection (unweighted)</u> communication-edgeweights statistics

<u>BIMODAL</u> (projects also treated as actors!) communication-edges statistics

Further iterations

- The unbusy nodes still have free communication capacity among each other
- The busy nodes (nodeSum=1.0) are taken out of the game ... then it is iterated
- At some iteration, it stagnates.
- Interesting question: How many of the nodes have ~100% communication after stagnation

Analytically tractable model !

- → Bollobas-Riordan Kernel Method
- → Sascha, Tyll, Madeleine, Philippe
- \rightarrow Andreas: Mathematica numerics, EVs and plots
- e.g. 3 node types society with mixture of hubs, middle-degree, low-degree :
- 1) Setup the kernel for 1/degree communication with a knowledge transmission probability λ
- 2) If Operator-norm of that kernel reaches 1
 → birth of giant component
- 3) For which λ_{crit} does it happen?

Resulting plot, *very* preliminary: critical transmission probability λ_{crit}

ratios of the *degrees* of the 3 node types = α : β : γ

c1 of α -degree-type c2 of β -degree-type c3 of γ -degree-type c1 fixed to 65% of nodes plot over c2 \rightarrow c3 = 1 - c1 - c2 So to the right: more hubs, to the left: more middle-degree nodes

Resulting plot, *very* preliminary Multiplicative vs additive coupling (green) (red)

