Communication Index a study of a new efficiency measure for networks - work in progress !!!

involved so far:
Andreas Krueger
Madeleine Sirugue-Collin
Philippe Blanchard
6.3.2008

Sascha Delitzscher
Tyll Krueger

Math Encounters 34
Funchal, Madeira, PT

Where does it come from ...?

GEP modell for knowledge diffusion on networks ...
... the local interaction depends on how busy s.o. is local observables
$\Omega_{t}(x)=\sum_{x \sim y} \omega(y) \quad$ number of knowing neighbours of $x=3$
$\Phi_{t}(x)=\sum_{x \sim y} \frac{1}{d(y)} \omega(y) \quad$ local knowledge inflow $=1+1 / 3+1 / 6=1.5$

1/degree weighing of the knowing neighbours

From that process to a static measure

- Let an existing edge $x \sim y$ symbolize communication between node x and y
- Time someone can spend with neighbours be equally divided among them $\rightarrow 1 /$ degree
- BUT: Relevant for the time that is actually spent ...
- ... is the more busy of both nodes:
\rightarrow edgeweight(x, y) $=$ min [1/degree(x), 1/degree(y)]
- Sum of all such edgeweights around each x : communication „capacity utilisation" („workload") of x
- then Sum this over all nodes / take the average =: „communication index" of whole network

UNIMODAL ORGs Projection (unweighted)

Node statistics of „capacity utilisation" („workload")

BIMODAL (projects also treated as actors!)

 Node statistics of „capacity utilisation" (,workload")

UNIMODAL ORGs Projection (unweighted) communication-edgeweights statistics

BIMODAL (projects also treated as actors!) communication-edges statistics

Further iterations

- The unbusy nodes still have free communication capacity among each other
- The busy nodes (nodeSum=1.0) are taken out of the game ... then it is iterated
- At some iteration, it stagnates.
- Interesting question: How many of the nodes have $\sim 100 \%$ communication after stagnation

Iterations until stagnation (FP2_ORGS)

Iterations until stagnation (FP2_ORGS)

Analytically tractable model !

\rightarrow Bollobas-Riordan Kernel Method
\rightarrow Sascha, Tyll, Madeleine, Philippe
\rightarrow Andreas: Mathematica numerics, EVs and plots
e.g. 3 node types society with mixture of hubs, middle-degree, low-degree :

1) Setup the kernel for $1 /$ degree communication with a knowledge transmission probability λ
2) If Operator-norm of that kernel reaches 1 \rightarrow birth of giant component
3) For which $\lambda_{\text {crit }}$ does it happen?

Resulting plot, very preliminary: critical transmission probability $\lambda_{\text {crit }}$

 ratios of the degrees of the 3 node types $=\boldsymbol{\alpha}: \boldsymbol{\beta}: \boldsymbol{\gamma}$
c1 of α-degree-type \quad c2 of β-degree-type \quad c3 of γ-degree-type
c1 fixed to 65% of nodes plot over c2 $\rightarrow \quad \mathrm{c} 3=1-\mathrm{c} 1-\mathrm{c} 2$
So to the right: more hubs, to the left: more middle-degree nodes

Resulting plot, very preliminary

 Multiplicative vs additive coupling (green) (red)

Resulting plot, very preliminary Multiplicative vs additive coupling (green) (red)

