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2 of 40Corruption?
Imagine any contagion process with

1. Neighbour infection
– Threshold contagion, i.e. local infection only if 

„level of corruption of my neighbours exceeds ∆“
– plus small infection probability if less than ∆

2. Mean field infection ~ total prevalence
3. Mean field desinfection ~ number of uninfected

e.g.:
• opinions, fashions, …
• waves of scientific hypes, discussed topics…
• transition to a democratic society, sustainable society, …
• innovation processes
• Corruption…
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Main features and findings
• generalized epidemic process
• on the graph of social relationships
• strong nonlinear dependence of transmission probability 

on local density of corruption
• additional mean field influence of the overall prevalence 

of corruption in society
• Global-Local interaction, fatal resonance
• Existence of an infection threshold
• important role:

– network clustering (local redundancy of contact paths)
– degree-degree correlation (hierarchical vs. more democratic)

• we study:
– phase transitions
– interaction of the processes
– influence of graph structure
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Corruption:
few attempts to model mathematically

1. Microeconomics, game theory, 
maximizing profit functional, 
mean corruption, stability analysis

2. cellular automata, simple state variables, 
local interaction dynamics, 
often only on 1-dim lattice (nevertheless 
complex dynamics)

Our way: 
Similar to 2., but on complex networks
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Corruption
• Human social interaction

Deviation from fair play (cultural context)
• Misuse of (public) power

Gain profit in a more or less illegal way
• Criminal act, but also state of mind
• Typology of corrupt actors: 

highly educated, well positioned, 
not thinking to have done s.th. wrong

• Notorious problem to get empirical data

6 of 40The Corruption Perception Index CPI-2004
for the first 40 countries (from Transparency International)
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Corruption state variables

ω(x, t) in [0,1] 
= node x is corrupt/non-corrupt at time t

Ω(x, t) 
= number of infected neighbours at time t
∑=

xy

ty
~

),(ω

bt = total prevalence of corruption at time t

∑
∈

=
Vy

t ty
V

b ),(1 ω V = number of nodes
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Implemented LOCAL Processes:
α-process: “if enough neighbours…”
• The local transmission probability

for # of corrupt neighbours ≥ ∆
• Typical value: α>>ε,β,γ
• Possible translations:

Influenceability by others, Decisiveness

ε-process: “if at least one neighbour …”
• The (classical) local epidemic probability 

for # of corrupt neighbours < ∆
• Typical value: ε<<α,β,γ (very small)
• Possible translations: Naiveity

10 of 40

Local infection probabilities, 
(absolute ∆=5 threshold)
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The threshold ∆ or δ:
Let d(x) be the degree of node x

and Ω(x) the number of infected neighbours

Absolute threshold ∆
The α-process can happen if  Ω(x) ≥ ∆
regardless of the degree d(x) of a node
Æ nodes with d(x) < ∆ are irrelevant for the α-process
Æ hubs with d(x) >> ∆ are easily infected by the the α-process

Relative threshold ∆
The α process can happen if  Ω(x) / d(x) ≥ δ
Æ Any node can be taken by the α-process
Æ hubs with d(x) >> ∆ are more difficult to infect

We have concentrated on the absolute threshold ∆
because easier to treat analytically – and due to lack of time ☺
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Implemented GLOBAL Processes:
β-process: “infection through public opinion”
• The mean  field transmission process due to the 

total (believed) prevalence of corruption
• Typical value: ε<β<γ
• Possible translations:

“Random” infection: How informed are you? 
How much do you belief in mass media?

γ-process: “(only) the healthy can cure others”
• The (mean field!) corruption recover process due to 

the fight of the (healthy) society against corruption
• Typical value: β<γ<α
• Possible translations: 

random resistance / recovering / cleaning
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GLOBAL processes, cntd.
β-process: mean-field infection
• proportional to total prevalence bt

• Individual has to overcome “fear”
fear is proportional to uninfected part (1- bt)

2
1 )())1(1)(()0|1(Pr ttttt bbb ββωωβ =−−===+

γ-process: mean-field des-infection
• Only the healthy can cure
Æproportional to 1-total prevalence (1-bt)

)1()1|0(Pr 1 ttt b−===+ γωωγ
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The networks
• Erdösz-Renyi Random Graphs (RGs)
• Triangle-Modified RGs:

Throw triangles first, then fill up with edges
• MolloyReed Algorithm to get arbitrary degree 

distribution, e.g. scale-free
! always multiplicative degree-degree correlation !

• Modified MolloyReed Algorithm: choose ~equal 
outdegree for all nodes
Æ additive degree-degree correlation

• “Real world” empirical networks of the EU-funded R&D 
projects (projects and organizations from CORDIS 
database of the European commission)

• Set graphs, intersection graphs, “affiliation networks”,
unipartite projections of such bipartite graphs …
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Initial infection with b0 corrupt nodes (random/ball)
Æupdate one vertex
Æall vertices, sync update
Ædo until stagnation

get: end prevalence (usually ~0 or ~1)

Structure of the Python Program

Example Legend

Æ many runs to get average end prevalence
ÆTransition finder: vary b0 to locate bundercrit

and bovercrit and get (mean value) bcrit

Æ sweep (network property) 
X=N, M, T or λ to plot bcrit over X

16 of 40

Single run until stagnation 1
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∆=30  ε=0 α=0.99  β=0.09  γ=0.545  b0=0.10
Network FP2: N=4879  M=57633  mean degree=23.6  mean triangles=256.9

Low semistable prevalence in a real collaboration network



9

17 of 40

0 200 400 600 800 1000
0,000

0,025

0,050

0,075

0,100

0,125

0,150

0,175

0,200

0,225

pr
ev

al
en

ce

time

Single run until stagnation 2

∆=25  ε=0.001 α=0.20  β=0.04  γ=0.03  b0=0.005
Network FP3: N=7710  M=93852  mean degree=24.3  mean triangles=418.1

Jump from very low prevalence to low prevalence
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Contribution of the 4 (des)infection paths for the “jump”
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Single run until stagnation 3

∆=20  ε=0.001 α=0.20  β=0.04  γ=0.03  b0=0.005
Network FP3: N=7710  M=93852  mean degree=24.3  mean triangles=418.1

Slow increase of prevalence until collapse
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Single run until stagnation 3
Contribution of the 4 (des)infection paths for the run before 
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Single run until stagnation 3
Zoom for the first jump to the intermediate level
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…(end of) single runs
• Possibility for a fatal resonance between 

local (ε, α) and mean-field process (β) 
• Single-Process plots very useful to 

understand the rich behaviour

critical density …
• …will now be THE interesting parameter
• How does it change when we vary 

parameters or graph properties ?
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23 of 40end prevalence 
vs. initial prevalence
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∆=8  ε=0.001  α=0.20  β=0.08  γ=0.06
N=859 M=3368  by Random Set Model (O=1000 P=500)
degree: min=2 max=33 mean=7.8  

44% nodes have degree ≥ 8

Critical Area
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Critical Density over 
∆ = neighbour infection threshold
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Critical Density over M = #edges 
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 critical initial infection
 Y=A+BX   A=0.50  B=-0.000022

∆=5  ε=0.005 α=0.35  β=0.08  γ=0.04  (20 runs averages)
Network GNM: N=4000
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bcrit over M 
single processes
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Up to edge density 2 (M=8000, mean 
degree=4), β-process > α-process, 
then α –process > β-process (∆ = 5!) 

At edge density 4.5 a sharp peak 
(where ε-process ~= γ-process),
in classical terms, this corresponds to 
reproduction number R0=1
At the same time collapse of critical 
initial corruption density
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Phase transition with respect to 
Initial Number of Infected Nodes

Classical epidemic process is:
• either overcritical (reproduction number R0>1) 
Æ and a single initially infected infects a 
positive fraction with positive probability

• or undercritical (R0<1)
Æ all infected will die out, everyone’s healthy

In corruption infection:
• both (mean-field and local) processes can 

have phase transitions with respect to the 
initial density of corrupt vertices
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Critical Density over T = #triangles

∆=2  ε=0.005 α=0.30  β=0.08  γ=0.04  (20 runs averages)
Network GNTM: N=1000  M=2000
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Clustering helps corruption

• In classical epidemics, local clique-clustering 
slows down the disease spreading because of 
re-infection instead of the infection of healthy

• Here, though, the highly clustered, medium-
degree vertices are especially well-suited for 
the spread of corruption, because a threshold 
∆ of neighbours has to be corrupt to trigger the 
α-process
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Critical Density over λ = SF-exponent

∆=5  ε=0 α=0.35  β=0.08  γ=0.04
N=20000 M=50000 Network generated by MolloyReed with given Degree-Histogram
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Critical Density over λ = SF-exponent
• There seems to be a phase transition 

around λ=2.4  for ∆=5 (around λ=2.9 for ∆=2)
• not at λ=3 (where structural phase transition, 
λ<3: expected pathlength finite), 
probably due to finite size effects
(N=20000 only)
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1) Wanted Degree Distribution, e.g. once k=3, twice k=2, once k=1

2) For each node draw k from distribution and create k clones (“virtual nodes”)

3) Random Pairing

4) Identify again all virtual nodes from same originator

5) Remove double- and self-links

6) The result: A network with the ~wanted degree distribution:

Molloy Reed Graph Generator
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42

1 12

Our modification:
For addditive (instead of multiplicative) 
DegreeDegree Correlation: 
3b) Pairing with ~equal “Out-Degree” for each node
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Molloy Reed algorithm
Out-Degree ~ Degree
In-Degree ~ Degree

Æ Multiplicative 
DegreeDegree Correlation

Modified Molloy Reed algorithm
Out-Degree ~ 2M/N

In-Degree ~ (Degree – (2M/N))
~ Degree

Æ Additive 
DegreeDegree Correlation

34 of 40

})()(|~Pr{ kydkxdyx ′=∧=
N

kk ′•~
multiplicative
DegreeDegreeCorrelation

Why in graphs with such a correlation the threshold bcritÆ 0 for NÆ∞ ?

For fixed
ν

λ
−

>
1

0 Nb and ν>0 the vertices x with d(x)≥k0>>∆/b0 get almost surely infected
via the α-process (as long as γ< α). Let Ak0 be the set of such vertices.

A vertex y with d(y)=k<k0 is linked 
to the set Ak0 with probability qk

For vertices y with d(y) > k0
λ-2

one has almost sure linkage to 
the set Ak0 (because qk close to 1).
Now infection via α –process… Æ Positive N-independent infection density 

bt>>b0 such that the β–process is overcritical, 
and finally the whole vertex set corrupt! N has to be large, possible reason 

for our λ~2.4 instead of λ~3 transition

Multiplicative DegreeCorrelations: Chains of almost sure 
linkages from high degree to low degree vertex sets

For SF-graphs with additive degree correlation this argument about chains of 
almost sure linkages from high degree to low degree cannot be adopted. 
One therefore expects a higher value of the critical density bcrit for additive 
DegreeCorrelation, so the system is not as susceptible for corruption.
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• SF-Networks with multiplicative 
DegreeCorrelation (hierarchical, …)
are more easily corrupted than those 
with additive DegreeCorrelation
(polycentric, democratic)

• Especially true for low λ < 3
(where very big hubs can exist).

Additive vs. Multiplicative 
DegreeDegree Correlation
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37 of 40Absolute vs. Relative Threshold ∆
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∆(x) = 0.8 * degree(x)  
ε=0 α=0.35  β=0.08  γ=0.04

Network GNM: N=4000
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Absolute and relative threshold ∆

Degree dependent threshold:
∆(x) = 0.8 * degree(x)

• There is still a critical density, but the 
value increases with the edge density 

• because the mean threshold increases 
proportionally to the mean degree
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Epidemic Control
• This is an ABSTRACT model! 

Only structural & schematic tendencies!
• Positively correlated to corruption:
α & ε = strength of influence of others
β = strength of e.g. mass media

• Negatively correlated to corruption:
∆=How many neighbours have to be corrupt?
γ=How strong does the society fight back?

• avoid high clustering
• “Transparency”: ∆↑ α↓ β↓
• “Police”: β↓(increase of fear), γ↑(uncovering rate)

but γ> α, β is a “total police state”
• Moral resistance: ∆↑ α↓
• (Hierarchical) Decision Systems should be as flat, 

independent, polycentric as possible! 
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Perspectives
• Faster, faster, faster (bigger systems, esp. SF!)
• Deeper understanding of α-process 

(already non-trivial on trees!)
• Quenched disorder in all parameters
• More topology-dependent processes (like relative ∆=d(x)*0.8)

– e.g. hubs react differently from leaves
– cliquish-people react stronger to neighbours (α↑ β↓)

than lowly connected people who react stronger to mass media (α↓ β↑)
• Corruption state variable not only 0 or 1
• Evolving networks, interaction of process and structure, 

e.g. selection of (non)corrupt neighbours
• Weighted networks
• Degree weighted total corruption prevalence
• Application to other fields (e.g. innovation dynamics)

• Your suggestions?
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Thank you for your attention!
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