

Corruption? 2 of 40 Imagine any contagion process with

1. Neighbour infection

- **Threshold** contagion, i.e. local infection only if <u>"level of corruption of my neighbours exceeds Δ</u>"
- plus small infection probability if less than Δ
- 2. <u>Mean field infection</u> ~ total prevalence
- 3. <u>Mean field desinfection</u> ~ number of uninfected

<u>e.g.:</u>

- opinions, fashions, ...
- waves of scientific hypes, discussed topics...
- transition to a democratic society, sustainable society, ...
- innovation processes
- Corruption...

Main features and findings

3 of 40

- generalized epidemic process
- on the graph of social relationships
- strong nonlinear dependence of transmission probability on local density of corruption
- additional mean field influence of the overall prevalence of corruption in society
- Global-Local interaction, fatal resonance
- Existence of an infection threshold
- important role:
 - network clustering (local redundancy of contact paths)
 - degree-degree correlation (hierarchical vs. more democratic)
- we study:
 - phase transitions
 - interaction of the processes
 - influence of graph structure

The Corruption Perception Index CPI-2004						
for the f	irst 40 countrie	es (fron	n Trans	sparency	International)	
Rang	Länder	CPI2004	Rang	Länder	CPI2004	
1	Finnland	9.7	21	Barbados	7.3	
2	Neuseeland	9.6	22	Frankreich	7.1	
3	Dänemark	9.5	23	Spanien	7.1	
4	Island	9.5	24	Japan	6.9	
5	Singapur	9.3	25	Malta	6.8	
6	Schweden	9.2	26	Israel	6.4	
7	Schweiz	9.1	27	Portugal	6.3	
8	Norwegen	8.9	28	Uruguay	6.2	
9	Australien	8.8	29	Oman	6.1	
10	Niederlande	8.7	30	Vereinigte Arabische	6.1	
11	Großbritannien	8.6	31	Botswana	6	
12	Kanada	8.5	32	Estland	6	
13	Österreich	8.4	33	Slowenien	6	
14	Luxemburg	8.4	34	Bahrain	5.8	
15	Deutschland	8.2	35	Taiwan	5.6	
16	Hongkong	8	36	Zypern	5.4	
17	Belgien	7.5	37	Jordanien	5.3	
18	Irland	7.5	38	Katar	5.2	
19	USA	7.5	39	Malaysia	5	
20	Chile	7.4	40	Tunesien	5	

$$\begin{aligned} & \text{Corruption state variables} \\ & \omega(\mathbf{x}, \mathbf{t}) \text{ in } [0,1] \\ &= \text{node } \mathbf{x} \text{ is corrupt/non-corrupt at time t} \\ & \Omega(\mathbf{x}, \mathbf{t}) \\ &= \text{number of infected neighbours at time t} \\ & = \sum_{y \sim x} \omega(y, t) \\ & \mathbf{b}_{t} = \text{total prevalence of corruption at time t} \\ & b_{t} = \frac{1}{|V|} \sum_{y \in V} \omega(y, t) \qquad |V| = \text{number of nodes} \end{aligned}$$

The threshold Δ or δ :

11 of 40

Let d(x) be the degree of node x and $\Omega(x)$ the number of infected neighbours

Absolute threshold ∆

The α -process can happen if $\Omega(x) \geq \Delta$

regardless of the degree d(x) of a node

- \rightarrow nodes with d(x) < Δ are irrelevant for the α -process
- \rightarrow hubs with d(x) >> Δ are easily infected by the the α -process

<u>Relative threshold ∆</u>

The α process can happen if $\Omega(x) / d(x) \ge \delta$ \rightarrow Any node can be taken by the α -process

 \rightarrow hubs with d(x) >> Δ are more difficult to infect

We have concentrated on the *absolute threshold* Δ because easier to treat analytically – and due to lack of time \bigcirc

$$\Pr_{\gamma}(\omega_{t+1} = 0 \mid \omega_t = 1) = \gamma(1 - b_t)$$

Multiplicative DegreeCorrelations: Chains of almost sure linkages from high degree to low degree vertex sets $\Pr\{x \sim y \mid d(x) = k \land d(y) = k'\} \sim \frac{k \bullet k'}{N} \quad \begin{array}{c} \text{multiplicative} \\ \text{DegreeDegreeCorrelation} \\ \text{Why in graphs with and} \end{array}$ Why in graphs with such a correlation the threshold $b_{crit} \rightarrow 0$ for $N \rightarrow \infty$? For fixed $b_0 > N^{\frac{1}{\lambda}-\nu}$ and v>0 the vertices x with $d(x) \ge k_0 >> \Delta/b_0$ get almost surely infected via the α -process (as long as $\gamma < \alpha$). Let A_{k0} be the set of such vertices.
$$\begin{split} q_k &\sim 1 - \prod_{k' \geq k_0}^{k_{\max} \sim N^{\frac{1}{\lambda}}} \left(1 - \frac{const \cdot k \cdot k'}{N} \right)^{const \cdot \frac{N}{(k')^{\lambda}}} \\ &\sim 1 - e^{-const \cdot \frac{k}{N} \sum_{k' \geq k_0} N \cdot \frac{k'}{(k')^{\lambda}}} \sim 1 - e^{-const \cdot k \frac{1}{k_0^{\lambda-2}}} \end{split}$$
A vertex y with $d(y)=k < k_0$ is linked to the set A_{k0} with probability q_k For vertices y with $d(y) > k_0^{\lambda-2}$ one has almost sure linkage to the set A_{k0} (because q_k close to 1). → Positive N-independent infection density Now infection via α -process... $b_t >> b_0$ such that the β -process is overcritical, ! N has to be large, possible reason and finally the whole vertex set corrupt for our λ ~2.4 instead of λ ~3 transition For SF-graphs with additive degree correlation this argument about chains of almost sure linkages from high degree to low degree cannot be adopted. One therefore expects a higher value of the critical density b_{crit} for additive DegreeCorrelation, so the system is not as susceptible for corruption.

Epidemic Control

39 of 40

- This is an ABSTRACT model! Only structural & schematic tendencies!
- Positively correlated to corruption:
 α & ε = strength of influence of others
 β = strength of e.g. mass media
- Negatively correlated to corruption:
 Δ=How many neighbours have to be corrupt?
 γ=How strong does the society fight back?
- avoid high clustering
- "Transparency": $\Delta \uparrow \alpha \downarrow \beta \downarrow$
- "Police": β↓(increase of fear), γ↑(uncovering rate) but γ> α, β is a "total police state"
- Moral resistance: Δ↑ α↓
- (Hierarchical) Decision Systems should be as flat, independent, polycentric as possible!

Perspectives	
 Faster, faster, faster (bigger systems, esp. SF!) Deeper understanding of α-process (already non-trivial on trees!) Quenched disorder in all parameters More topology-dependent processes (like relative Δ=d(x)*0.8) e.g. hubs react differently from leaves cliquish-people react stronger to neighbours (α↑ β↓) than lowly connected people who react stronger to mass media (α↓ β↑) Corruption state variable not only 0 or 1 Evolving networks, interaction of process and structure, e.g. selection of (non)corrupt neighbours Weighted networks Degree weighted total corruption prevalence Application to other fields (e.g. innovation dynamics) Your suggestions?)

